The mechanism of electroforming of metal oxide memristive switches

Metal and semiconductor oxides are ubiquitous electronic materials. Normally insulating, oxides can change behavior under high electric fields—through ‘electroforming’ or ‘breakdown’—critically affecting CMOS (complementary metal–oxide–semiconductor) logic, DRAM (dynamic random access memory) and flash memory, and tunnel barrier oxides. An initial irreversible electroforming process has been invariably required for obtaining metal oxide resistance switches, which may open urgently needed new avenues for advanced computer memory and logic circuits including ultra-dense non-volatile random access memory (NVRAM) and adaptive neuromorphic logic circuits. This electrical switching arises from the coupled motion of electrons and ions within the oxide material, as one of the first recognized examples of a memristor (memory–resistor) device, the fourth fundamental passive circuit element originally predicted in 1971 by Chua. A lack of device repeatability has limited technological implementation of oxide switches, however. Here we explain the nature of the oxide electroforming as an electro-reduction and vacancy creation process caused by high electric fields and enhanced by electrical Joule heating with direct experimental evidence. Oxygen vacancies are created and drift towards the cathode, forming localized conducting channels in the oxide. Simultaneously, O2− ions drift towards the anode where they evolve O2 gas, causing physical deformation of the junction. The problematic gas eruption and physical deformation are mitigated by shrinking to the nanoscale and controlling the electroforming voltage polarity. Better yet, electroforming problems can be largely eliminated by engineering the device structure to remove ‘bulk’ oxide effects in favor of interface-controlled electronic switching.

[1]  J. Yang,et al.  Electrical transport and thermometry of electroformed titanium dioxide memristive switches , 2009 .

[2]  R. Waser,et al.  Characteristic electroforming behavior in Pt/TiO2/Pt resistive switching cells depending on atmosphere , 2008 .

[3]  J. Yang,et al.  Memristive switching mechanism for metal/oxide/metal nanodevices. , 2008, Nature nanotechnology.

[4]  Gregory S. Snider,et al.  Spike-timing-dependent learning in memristive nanodevices , 2008, 2008 IEEE International Symposium on Nanoscale Architectures.

[5]  D. Stewart,et al.  The missing memristor found , 2008, Nature.

[6]  G. I. Meijer,et al.  Who Wins the Nonvolatile Memory Race? , 2008, Science.

[7]  R. Janssen,et al.  Resistive switching in organic memories with a spin-coated metal oxide nanoparticle layer , 2008 .

[8]  J. J. Yang,et al.  Oxide and carbide formation at titanium/organic monolayer interfaces. , 2008, Journal of the American Chemical Society.

[9]  S. Haddad,et al.  Erasing characteristics of Cu2O metal-insulator-metal resistive switching memory , 2008 .

[10]  Henrique L. Gomes,et al.  Reproducible resistive switching in nonvolatile organic memories , 2007 .

[11]  R. Waser,et al.  Nanoionics-based resistive switching memories. , 2007, Nature materials.

[12]  Takumi Mikawa,et al.  Electroforming and resistance-switching mechanism in a magnetite thin film , 2007 .

[13]  Zheng Wang,et al.  Field-programmable rectification in rutile TiO2 crystals , 2007 .

[14]  Doo Seok Jeong,et al.  Resistive switching in a Pt/TiO2/Pt thin film stack -- a candidate for a non-volatile ReRAM , 2007 .

[15]  R. Waser,et al.  Coexistence of Bipolar and Unipolar Resistive Switching Behaviors in a Pt ∕ TiO2 ∕ Pt Stack , 2007 .

[16]  B. Delley,et al.  Role of Oxygen Vacancies in Cr‐Doped SrTiO3 for Resistance‐Change Memory , 2007, 0707.0563.

[17]  C. N. Lau,et al.  Quantum conductance oscillations in metal/molecule/metal switches at room temperature. , 2007, Physical review letters.

[18]  Rainer Waser,et al.  Nanoscale resistive switching in SrTiO3 thin films , 2007 .

[19]  J. Gómez‐Herrero,et al.  WSXM: a software for scanning probe microscopy and a tool for nanotechnology. , 2007, The Review of scientific instruments.

[20]  R. McCreery,et al.  Electronic characteristics of fluorene/TiO2 molecular heterojunctions. , 2007, The Journal of chemical physics.

[21]  Raj René Janssen,et al.  Electronic memory effects in diodes from a zinc oxide nanoparticle-polystyrene hybrid material , 2006 .

[22]  R. Waser,et al.  Switching the electrical resistance of individual dislocations in single-crystalline SrTiO3 , 2006, Nature materials.

[23]  Zhaoning Yu,et al.  Circuit fabrication at 17 nm half-pitch by nanoimprint lithography. , 2006, Nano letters.

[24]  N. Wu,et al.  Spatially extended nature of resistive switching in perovskite oxide thin films , 2006, cond-mat/0601451.

[25]  M. Kozicki,et al.  Nanoscale memory elements based on solid-state electrolytes , 2005, IEEE Transactions on Nanotechnology.

[26]  William R. McGovern,et al.  Importance of Oxides in Carbon/Molecule/Metal Molecular Junctions with Titanium and Copper Top Contacts , 2005 .

[27]  R. Stanley Williams,et al.  Scanned probe imaging of nanoscale conducting channels in Pt/alkanoic acid monolayer/Ti devices , 2005 .

[28]  K. Terabe,et al.  Quantized conductance atomic switch , 2005, Nature.

[29]  S. Seo,et al.  Reproducible resistance switching in polycrystalline NiO films , 2004 .

[30]  A. Sawa,et al.  Hysteretic current–voltage characteristics and resistance switching at a rectifying Ti∕Pr0.7Ca0.3MnO3 interface , 2004, cond-mat/0409657.

[31]  H. Akinaga,et al.  Strong electron correlation effects in non-volatile electronic memory devices , 2004, Symposium Non-Volatile Memory Technology 2005..

[32]  Gun Young Jung,et al.  Fabrication of a 34 × 34 Crossbar Structure at 50 nm Half-pitch by UV-based Nanoimprint Lithography , 2004 .

[33]  R. Stanley Williams,et al.  Direct Observation of Nanoscale Switching Centers in Metal/Molecule/Metal Structures , 2004 .

[34]  C. Gerber,et al.  Current-driven insulator–conductor transition and nonvolatile memory in chromium-doped SrTiO3 single crystals , 2001 .

[35]  Derek J. Fray,et al.  Direct electrochemical reduction of titanium dioxide to titanium in molten calcium chloride , 2000, Nature.

[36]  C. Gerber,et al.  Reproducible switching effect in thin oxide films for memory applications , 2000 .

[37]  S. Q. Liu,et al.  Electric-pulse-induced reversible resistance change effect in magnetoresistive films , 2000 .

[38]  H. Tuller,et al.  Electrical and defect thermodynamic properties of nanocrystalline titanium dioxide , 1999 .

[39]  A. Pergament,et al.  Electroforming and Switching in Oxides of Transition Metals: The Role of Metal-Insulator Transition in the Switching Mechanism , 1996 .

[40]  R. Palmer,et al.  Regeneration of electroformed metal - insulator - metal devices: a new model , 1996 .

[41]  K. Szot,et al.  Microscopic nature of the metal to insulator phase transition induced through electroreduction in single‐crystal KNbO3 , 1992 .

[42]  H. Pagnia,et al.  The electroforming process in MIM diodes , 1981 .

[43]  L. Chua Memristor-The missing circuit element , 1971 .

[44]  D. Morgan,et al.  Electrical phenomena in amorphous oxide films , 1970 .

[45]  D. Morgan,et al.  A model for filament growth and switching in amorphous oxide films , 1970 .

[46]  J. G. Simmons,et al.  Forming process in evaporated SiO thin films , 1967 .

[47]  T. W. Hickmott LOW-FREQUENCY NEGATIVE RESISTANCE IN THIN ANODIC OXIDE FILMS , 1962 .

[48]  K. Boahen Neuromorphic Microchips. (Cover story) , 2005 .

[49]  Carver Mead,et al.  Analog VLSI and neural systems , 1989 .

[50]  C. Hogarth,et al.  Observations of local defects caused by electrical conduction through thin sandwich structures of AgSiO/BaOAg , 1976 .

[51]  I. Emmer,et al.  Conducting filaments and voltage-controlled negative resistance in Al-Al2O3-Au structures with amorphous dielectric , 1974 .

[52]  S. Basavaiah,et al.  Bistable switching in ZrZrO2Au junctions , 1970 .