Rendering of forest scenery using 3D textures

Visual simulation of forest scenery is a challenging problem which includes the following tough sub-problems: generation of vegetation, representation of trees, simulation of colour change of leaves, and rendering of numerous trees. Among those sub-problems, this paper treats mainly the last one. A conventional polygon-based rendering algorithm often produces troublesome aliasing effects when it is applied to the objects having complex fine surfaces, such as forest scenery. In this paper, we show that an extended volume rendering technique applied to 3D textures, i.e. volume data in this paper, of trees is effective in the concerned problem. Kajiya left, as further work, the problem of rendering forest scenery by applying his 3D texture called texel. Our rendering method consists of the following three steps: we first generate 3D textures of trees from their polygon-based geometric models, we next arrange the 3D textures, allowing their possible mutual intersections, on the surface of a given polygon-based terrain model according to a simulated vegetation, and we finally produce an image of forest scenery by applying the ray-tracing algorithm including our slightly extended volume rendering technique. © 1997 John Wiley & Sons, Ltd.