Triangular Springs for Modeling Nonlinear Membranes

This paper provides a formal connection between springs and continuum mechanics in the context of one-dimensional and two-dimensional elasticity. In the first stage, the equivalence between tensile springs and the finite element discretization of stretching energy of planar curves is established. Furthermore, when the strain is a quadratic function of stretch, this energy can be described with a new type of springs called tensile biquadratic springs. In the second stage, we extend this equivalence to nonlinear membranes (St Venant-Kirchhoff materials) on triangular meshes leading to triangular biquadratic and quadratic springs. Those tensile and angular springs produce isotropic deformations parameterized by Young modulus and Poisson ratios on unstructured meshes in an efficient and simple way. For a specific choice of the Poisson ratio, 1/3, we show that regular spring-mass models may be used realistically to simulate a membrane behavior. Finally, the different spring formulations are tested in pure traction and cloth simulation experiments.

[1]  Andrew Nealen,et al.  Physically Based Deformable Models in Computer Graphics , 2006, Comput. Graph. Forum.

[2]  Gábor Székely,et al.  Simultaneous Topology and Stiffness Identification for Mass-Spring Models Based on FEM Reference Deformations , 2004, MICCAI.

[3]  Ronald Fedkiw,et al.  Finite volume methods for the simulation of skeletal muscle , 2003, SCA '03.

[4]  Mathieu Desbrun,et al.  Discrete shells , 2003, SCA '03.

[5]  Jean Louchet,et al.  Evolutionary identification of cloth animation models , 1995 .

[6]  Wolfgang Straßer,et al.  Deriving a Particle System from Continuum Mechanics for the Animation of Deformable Objects , 2003, IEEE Trans. Vis. Comput. Graph..

[7]  John C. Platt,et al.  Elastically deformable models , 1987, SIGGRAPH.

[8]  Neil A. Dodgson,et al.  Advances in Multiresolution for Geometric Modelling , 2005 .

[9]  P. Dłużewski,et al.  Anisotropic Hyperelasticity Based Upon General Strain Measures , 2000 .

[10]  J. W. Eischen,et al.  Continuum versus particle representations , 2000 .

[11]  Kai Hormann,et al.  Surface Parameterization: a Tutorial and Survey , 2005, Advances in Multiresolution for Geometric Modelling.

[12]  Demetri Terzopoulos,et al.  Modelling and animating faces using scanned data , 1991, Comput. Animat. Virtual Worlds.

[13]  Eitan Grinspun,et al.  CHARMS: a simple framework for adaptive simulation , 2002, ACM Trans. Graph..

[14]  H. Saunders,et al.  Finite element procedures in engineering analysis , 1982 .

[15]  Ronald Fedkiw,et al.  Adaptive physics based tetrahedral mesh generation using level sets , 2005, Engineering with Computers.

[16]  Markus H. Gross,et al.  A versatile and robust model for geometrically complex deformable solids , 2004, Proceedings Computer Graphics International, 2004..

[17]  Seth Green,et al.  Multilevel, subdivision-based, thin shell finite elements: development and an application to red blood cell modeling , 2003 .

[18]  Nadia Magnenat-Thalmann,et al.  Versatile and efficient techniques for simulating cloth and other deformable objects , 1995, SIGGRAPH.

[19]  Hervé Delingette,et al.  Non-linear anisotropic elasticity for real-time surgery simulation , 2003, Graph. Model..

[20]  Mathieu Desbrun,et al.  Dynamic real-time deformations using space & time adaptive sampling , 2001, SIGGRAPH.

[21]  Wolfgang Straßer,et al.  A fast finite element solution for cloth modelling , 2003, 11th Pacific Conference onComputer Graphics and Applications, 2003. Proceedings..

[22]  Yohan Payan,et al.  Hierarchical Multi-resolution Finite Element Model for Soft Body Simulation , 2006, ISBMS.

[23]  Mark Meyer,et al.  Implicit fairing of irregular meshes using diffusion and curvature flow , 1999, SIGGRAPH.

[24]  Venkat Devarajan,et al.  1D and 2D structured mass-spring models with preload , 2005, The Visual Computer.

[25]  Andrew P. Witkin,et al.  Large steps in cloth simulation , 1998, SIGGRAPH.

[26]  Timothy G. Clapp,et al.  Finite-element modeling and control of flexible fabric parts , 1996, IEEE Computer Graphics and Applications.

[27]  Allen Van Gelder,et al.  Approximate Simulation of Elastic Membranes by Triangulated Spring Meshes , 1998, J. Graphics, GPU, & Game Tools.

[28]  Marie-Paule Cani,et al.  Controlling Anisotropy in Mass-Spring Systems , 2000, Computer Animation and Simulation.

[29]  Wolfgang Straßer,et al.  A consistent bending model for cloth simulation with corotational subdivision finite elements , 2006 .

[30]  Ronald Fedkiw,et al.  Creating and simulating skeletal muscle from the visible human data set , 2005, IEEE Transactions on Visualization and Computer Graphics.

[31]  Daniel Thalmann,et al.  Deformable Tissue Parameterized by Properties of Real Biological Tissue , 2003, IS4TH.

[32]  David E. Breen,et al.  Predicting the drape of woven cloth using interacting particles , 1994, SIGGRAPH.

[33]  Monique Dauge,et al.  Plates and Shells: Asymptotic Expansions and Hierarchical Models , 2017 .

[34]  Stephane Cotin,et al.  A hybrid elastic model for real-time cutting, deformations, and force feedback for surgery training and simulation , 1999, Proceedings Computer Animation 1999.

[35]  Vincent Baudet Modélisation et simulation paramétrable d'objets déformables. Application aux traitements des cancers pulmonaires. , 2006 .

[36]  Nadia Magnenat-Thalmann,et al.  Simple linear bending stiffness in particle systems , 2006, SCA '06.

[37]  Xavier Provot,et al.  Deformation Constraints in a Mass-Spring Model to Describe Rigid Cloth Behavior , 1995 .

[38]  N. M. Thalmann,et al.  Developing simulation techniques for an interactive clothing system , 1997, Proceedings. International Conference on Virtual Systems and MultiMedia VSMM '97 (Cat. No.97TB100182).

[39]  Ronald Fedkiw,et al.  Simulation of clothing with folds and wrinkles , 2003, SCA '03.

[40]  Kwang-Jin Choi,et al.  Stable but responsive cloth , 2002, SIGGRAPH 2002.

[41]  Stephane Cotin,et al.  A hybrid elastic model for real-time cutting, deformations, and force feedback for surgery training and simulation , 2000, The Visual Computer.

[42]  M. Ortiz,et al.  Subdivision surfaces: a new paradigm for thin‐shell finite‐element analysis , 2000 .

[43]  Nicholas Ayache,et al.  Riemannian Elasticity: A Statistical Regularization Framework for Non-linear Registration , 2005, MICCAI.

[44]  William L. Briggs,et al.  A multigrid tutorial, Second Edition , 2000 .

[45]  Matthias Harders Surgical scene generation for virtual reality-based training in medicine , 2008 .

[46]  Ronald Fedkiw,et al.  Invertible finite elements for robust simulation of large deformation , 2004, SCA '04.