Fluorescent immunochromatographic test strip for therapeutic drug monitoring of methotrexate with high sensitivity and wide dynamic range

[1]  G. Shi,et al.  Ultrasensitive therapeutic drug monitoring of methotrexate by a structure-switching aptamer with cascade primer exchange reaction. , 2022, The Analyst.

[2]  Marc E Pfeifer,et al.  Fluorescence-polarization immunoassays within glass fiber micro-chambers enable tobramycin quantification in whole blood for therapeutic drug monitoring at the point of care. , 2022, Analytica chimica acta.

[3]  A. Boisen,et al.  Methotrexate Detection in Serum at Clinically Relevant Levels with Electrochemically Assisted SERS on a Benchtop, Custom Built Raman Spectrometer. , 2022, ACS sensors.

[4]  C. Banks,et al.  Electroanalytical point-of-care detection of gold standard and emerging cardiac biomarkers for stratification and monitoring in intensive care medicine - a review , 2022, Microchimica Acta.

[5]  M. Ghaedi,et al.  A review on corona virus disease 2019 (COVID-19): current progress, clinical features and bioanalytical diagnostic methods , 2022, Microchimica Acta.

[6]  Zhiyuan Tan,et al.  Medication therapy of high‐dose methotrexate: An evidence‐based practice guideline of the Division of Therapeutic Drug Monitoring, Chinese Pharmacological Society , 2021, British journal of clinical pharmacology.

[7]  A. Boisen,et al.  Quantification of Methotrexate in Human Serum Using Surface-Enhanced Raman Scattering-Toward Therapeutic Drug Monitoring. , 2021, ACS sensors.

[8]  M. Zhang,et al.  Selection of a Structure-Switching Aptamer for the Specific Methotrexate Detection. , 2021, ACS sensors.

[9]  Ling-bo Qu,et al.  Dual-readout test strips platform for portable and highly sensitive detection of alkaline phosphatase in human serum samples , 2021 .

[10]  H. Ueda,et al.  Creation of a Nanobody-Based Fluorescent Immunosensor Mini Q-body for Rapid Signal-On Detection of Small Hapten Methotrexate. , 2020, ACS sensors.

[11]  G. Urban,et al.  On-Site Therapeutic Drug Monitoring. , 2020, Trends in biotechnology.

[12]  Ran Yang,et al.  A fluorescent nanosphere-based immunochromatography test strip for ultrasensitive and point-of-care detection of tetanus antibody in human serum , 2019, Analytical and Bioanalytical Chemistry.

[13]  M. Kazemipour,et al.  Cerium-doped flower-shaped ZnO nano-crystallites as a sensing component for simultaneous electrochemical determination of epirubicin and methotrexate , 2019, Microchimica Acta.

[14]  T. Lam,et al.  Population Pharmacokinetic Study and Individual Dose Adjustments of High‐Dose Methotrexate in Chinese Pediatric Patients With Acute Lymphoblastic Leukemia or Osteosarcoma , 2019, Journal of clinical pharmacology.

[15]  Y. Narisawa,et al.  Development of a competitive enzyme-linked immunosorbent assay for therapeutic drug monitoring of afatinib , 2018, Journal of pharmaceutical analysis.

[16]  Z. Li,et al.  A portable fluorescence biosensor for rapid and sensitive glutathione detection by using quantum dots-based lateral flow test strip , 2018, Sensors and Actuators B: Chemical.

[17]  Leslie L Robison,et al.  Acute lymphoblastic leukaemia , 2018, Radiopaedia.org.

[18]  Xiaoqing Chen,et al.  Synthesis of Multi-Au-Nanoparticle-Embedded Mesoporous Silica Microspheres as Self-Filtering and Reusable Substrates for SERS Detection. , 2017, ACS applied materials & interfaces.

[19]  Pingli Li,et al.  A comparison of liquid chromatography-tandem mass spectrometry (LC-MS/MS) and enzyme-multiplied immunoassay technique (EMIT) for the determination of the cyclosporin A concentration in whole blood from Chinese patients. , 2017, Bioscience trends.

[20]  David I. Ellis,et al.  Quantitative Online Liquid Chromatography-Surface-Enhanced Raman Scattering (LC-SERS) of Methotrexate and its Major Metabolites. , 2017, Analytical chemistry.

[21]  M. Loh,et al.  Dexamethasone and High-Dose Methotrexate Improve Outcome for Children and Young Adults With High-Risk B-Acute Lymphoblastic Leukemia: A Report From Children's Oncology Group Study AALL0232. , 2016, Journal of clinical oncology : official journal of the American Society of Clinical Oncology.

[22]  C. Pui,et al.  Preventing and Managing Toxicities of High-Dose Methotrexate , 2016, The oncologist.

[23]  K. M. Koczula,et al.  Lateral flow assays , 2016, Essays in biochemistry.

[24]  L. Silverman,et al.  Consensus definitions of 14 severe acute toxic effects for childhood lymphoblastic leukaemia treatment: a Delphi consensus. , 2016, The Lancet. Oncology.

[25]  G. Gauglitz,et al.  Recent advances in therapeutic drug monitoring of immunosuppressive drugs , 2016 .

[26]  A. Paci,et al.  Review of therapeutic drug monitoring of anticancer drugs part 1--cytotoxics. , 2014, European journal of cancer.

[27]  M. Cheng,et al.  A sandwich substrate for ultrasensitive and label-free SERS spectroscopic detection of folic acid / methotrexate , 2014, Biomedical microdevices.

[28]  J. Pelletier,et al.  Monitoring methotrexate in clinical samples from cancer patients during chemotherapy with a LSPR-based competitive sensor. , 2012, The Analyst.

[29]  G. Curt,et al.  The pharmacology and clinical use of methotrexate. , 1983, The New England journal of medicine.

[30]  S. Eremin,et al.  A validated chemiluminescence immunoassay for methotrexate (MTX) and its application in a pharmacokinetic study , 2016 .