Image Labeling by Assignment

We introduce a novel geometric approach to the image labeling problem. Abstracting from specific labeling applications, a general objective function is defined on a manifold of stochastic matrices, whose elements assign prior data that are given in any metric space, to observed image measurements. The corresponding Riemannian gradient flow entails a set of replicator equations, one for each data point, that are spatially coupled by geometric averaging on the manifold. Starting from uniform assignments at the barycenter as natural initialization, the flow terminates at some global maximum, each of which corresponds to an image labeling that uniquely assigns the prior data. Our geometric variational approach constitutes a smooth non-convex inner approximation of the general image labeling problem, implemented with sparse interior-point numerics in terms of parallel multiplicative updates that converge efficiently.

[1]  J. Hofbauer,et al.  Evolutionary game dynamics , 2011 .

[2]  Sebastian Nowozin,et al.  A Comparative Study of Modern Inference Techniques for Structured Discrete Energy Minimization Problems , 2014, International Journal of Computer Vision.

[3]  D. Bayer,et al.  The nonlinear geometry of linear programming. II. Legendre transform coordinates and central trajectories , 1989 .

[4]  Andrew G. Barto,et al.  Reinforcement learning , 1998 .

[5]  E. Akin,et al.  Dynamics of games and genes: Discrete versus continuous time , 1983 .

[6]  Radford M. Neal Pattern Recognition and Machine Learning , 2007, Technometrics.

[7]  R. Horst,et al.  Global Optimization: Deterministic Approaches , 1992 .

[8]  N. Čencov Statistical Decision Rules and Optimal Inference , 2000 .

[9]  K. Ball An elementary introduction to modern convex geometry, in flavors of geometry , 1997 .

[10]  Michael J. Todd,et al.  On the Riemannian Geometry Defined by Self-Concordant Barriers and Interior-Point Methods , 2002, Found. Comput. Math..

[11]  Azriel Rosenfeld,et al.  Scene Labeling by Relaxation Operations , 1976, IEEE Transactions on Systems, Man, and Cybernetics.

[12]  Jean-Michel Morel,et al.  A Review of Image Denoising Algorithms, with a New One , 2005, Multiscale Model. Simul..

[13]  Sebastian Nowozin,et al.  A Comparative Study of Modern Inference Techniques for Discrete Energy Minimization Problems , 2013, 2013 IEEE Conference on Computer Vision and Pattern Recognition.

[14]  J. Sobel,et al.  On the limit points of discrete selection dynamics , 1992 .

[15]  Peter Stone,et al.  Reinforcement learning , 2019, Scholarpedia.

[16]  Radu Horaud,et al.  Figure-Ground Discrimination: A Combinatorial Optimization Approach , 1993, IEEE Trans. Pattern Anal. Mach. Intell..

[17]  Marcello Pelillo,et al.  Dominant Sets and Pairwise Clustering , 2007 .

[18]  Christoph Schnörr,et al.  Partial Optimality by Pruning for MAP-Inference with General Graphical Models , 2014, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[19]  R. Duncan Luce,et al.  Individual Choice Behavior: A Theoretical Analysis , 1979 .

[20]  R. Luce,et al.  Individual Choice Behavior: A Theoretical Analysis. , 1960 .

[21]  Shun-ichi Amari,et al.  Methods of information geometry , 2000 .

[22]  Christoph Schnörr,et al.  A bundle approach to efficient MAP-inference by Lagrangian relaxation , 2012, 2012 IEEE Conference on Computer Vision and Pattern Recognition.

[23]  Michael I. Jordan,et al.  Graphical Models, Exponential Families, and Variational Inference , 2008, Found. Trends Mach. Learn..

[24]  J. Jost Riemannian geometry and geometric analysis , 1995 .

[25]  Nihat Ay,et al.  On the Fisher Metric of Conditional Probability Polytopes , 2014, Entropy.

[26]  Tomás Werner,et al.  A Linear Programming Approach to Max-Sum Problem: A Review , 2007, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[27]  Steven W. Zucker,et al.  On the Foundations of Relaxation Labeling Processes , 1983, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[28]  H. Karcher Riemannian center of mass and mollifier smoothing , 1977 .

[29]  D. Bayer,et al.  The Non-Linear Geometry of Linear Pro-gramming I: A?ne and projective scaling trajectories , 1989 .

[30]  Vladimir Kolmogorov,et al.  Convergent Tree-Reweighted Message Passing for Energy Minimization , 2006, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[31]  Marcello Pelillo,et al.  Replicator Equations, Maximal Cliques, and Graph Isomorphism , 1998, Neural Computation.

[32]  William T. Freeman,et al.  Constructing free-energy approximations and generalized belief propagation algorithms , 2005, IEEE Transactions on Information Theory.

[33]  Tony F. Chan,et al.  Structure-Texture Image Decomposition—Modeling, Algorithms, and Parameter Selection , 2006, International Journal of Computer Vision.

[34]  H. Orland Mean-field theory for optimization problems , 1985 .

[35]  Jean-Michel Morel,et al.  Neighborhood filters and PDE’s , 2006, Numerische Mathematik.

[36]  Christoph Schnörr,et al.  Optimality Bounds for a Variational Relaxation of the Image Partitioning Problem , 2012, Journal of Mathematical Imaging and Vision.

[37]  M. Ledoux The concentration of measure phenomenon , 2001 .

[38]  Tom Heskes,et al.  Convexity Arguments for Efficient Minimization of the Bethe and Kikuchi Free Energies , 2006, J. Artif. Intell. Res..

[39]  Christoph Schnörr,et al.  MAP-Inference for Highly-Connected Graphs with DC-Programming , 2008, DAGM-Symposium.

[40]  R. Kass The Geometry of Asymptotic Inference , 1989 .

[41]  Joachim M. Buhmann,et al.  Pairwise Data Clustering by Deterministic Annealing , 1997, IEEE Trans. Pattern Anal. Mach. Intell..

[42]  Christopher M. Bishop,et al.  Pattern Recognition and Machine Learning (Information Science and Statistics) , 2006 .

[43]  Mila Nikolova,et al.  Algorithms for Finding Global Minimizers of Image Segmentation and Denoising Models , 2006, SIAM J. Appl. Math..

[44]  Peyman Milanfar,et al.  A Tour of Modern Image Filtering , 2013 .

[45]  H. Karcher Riemannian Center of Mass and so called karcher mean , 2014, 1407.2087.

[46]  Daniel Cremers,et al.  A Convex Approach to Minimal Partitions , 2012, SIAM J. Imaging Sci..

[47]  Peyman Milanfar,et al.  Symmetrizing Smoothing Filters , 2013, SIAM J. Imaging Sci..

[48]  Marcello Pelillo,et al.  Annealed replication: a new heuristic for the maximum clique problem , 2002, Discret. Appl. Math..

[49]  Peyman Milanfar,et al.  A Tour of Modern Image Filtering: New Insights and Methods, Both Practical and Theoretical , 2013, IEEE Signal Processing Magazine.

[50]  Vladimir Kolmogorov,et al.  What energy functions can be minimized via graph cuts? , 2002, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[51]  K. Ball An Elementary Introduction to Modern Convex Geometry , 1997 .

[52]  Christoph Schnörr,et al.  Continuous Multiclass Labeling Approaches and Algorithms , 2011, SIAM J. Imaging Sci..

[53]  Joachim Weickert,et al.  Anisotropic diffusion in image processing , 1996 .

[54]  Marcello Pelillo,et al.  The Dynamics of Nonlinear Relaxation Labeling Processes , 1997, Journal of Mathematical Imaging and Vision.

[55]  Walter Gander,et al.  Smoothing filters , 1998 .

[56]  Immanuel M. Bomze,et al.  Regularity versus Degeneracy in Dynamics, Games, and Optimization: A Unified Approach to Different Aspects , 2002, SIAM Rev..

[57]  Yoel Shkolnisky,et al.  Diffusion Interpretation of Nonlocal Neighborhood Filters for Signal Denoising , 2009, SIAM J. Imaging Sci..