Current efforts in the analysis of RNAi and RNAi target genes

RNAi is RNA interference by short RNAs. It influences gene-expression by down-regulation of mRNAs, typically by complementarity to the 3' UTR (untranslated region) of the mRNA. microRNAs (miRNAs) are short RNAs acting as natural RNAi. miRNAs mediate down-regulation of many mRNAs from developmental genes and transcription factor genes. Natural examples for this additional level of post-transcriptional control are increasing. Suitable computer-based search strategies for new miRNA candidates include precursor folding as well as different compositional search strategies. Example programs for this are presented. New own and other data are provided for an overview on such strategies. A strategy feasible in plants for miRNA target identification is direct base pairing of miRNAs to potential mRNA target 3' UTRs. Correct identification in animals usually requires comparative genomics and conserved UTR regions pairing to conserved miRNA substructures. A number of example programs and target examples for these tasks are examined. Finally, strategies and programs for artificial gene silencing by designed RNAi are explained.

[1]  Graziano Pesole,et al.  UTRdb and UTRsite: specialized databases of sequences and functional elements of 5' and 3' untranslated regions of eukaryotic mRNAs , 2000, Nucleic Acids Res..

[2]  C. Burge,et al.  The microRNAs of Caenorhabditis elegans. , 2003, Genes & development.

[3]  E. Wagner,et al.  Antisense RNA regulation in prokaryotes: rapid RNA/RNA interaction facilitated by a general U-turn loop structure. , 1999, Journal of molecular biology.

[4]  John J Rossi,et al.  Control of HIV-1 replication by RNA interference. , 2004, Virus research.

[5]  Zasha Weinberg,et al.  Exploiting conserved structure for faster annotation of non-coding RNAs without loss of accuracy , 2004, ISMB/ECCB.

[6]  J. Bowman,et al.  Radial Patterning of Arabidopsis Shoots by Class III HD-ZIP and KANADI Genes , 2003, Current Biology.

[7]  R. Russell,et al.  bantam Encodes a Developmentally Regulated microRNA that Controls Cell Proliferation and Regulates the Proapoptotic Gene hid in Drosophila , 2003, Cell.

[8]  V. Ambros,et al.  The Cold Shock Domain Protein LIN-28 Controls Developmental Timing in C. elegans and Is Regulated by the lin-4 RNA , 1997, Cell.

[9]  G. Rubin,et al.  Computational identification of Drosophila microRNA genes , 2003, Genome Biology.

[10]  Chiara Gamberi,et al.  The C elegans hunchback homolog, hbl-1, controls temporal patterning and is a probable microRNA target. , 2003, Developmental cell.

[11]  Amihood Amir,et al.  A rapid method for detection of putative RNAi target genes in genomic data , 2003, ECCB.

[12]  J. Blake,et al.  Creating the Gene Ontology Resource : Design and Implementation The Gene Ontology Consortium 2 , 2001 .

[13]  G. Dreyfuss,et al.  Numerous microRNPs in neuronal cells containing novel microRNAs. , 2003, RNA.

[14]  B. Reinhart,et al.  The 21-nucleotide let-7 RNA regulates developmental timing in Caenorhabditis elegans , 2000, Nature.

[15]  G. Pruijn,et al.  Conserved features of Y RNAs: a comparison of experimentally derived secondary structures. , 2000, Nucleic acids research.

[16]  D. Bartel,et al.  MicroRNAs Modulate Hematopoietic Lineage Differentiation , 2004, Science.

[17]  V. Ambros,et al.  An Extensive Class of Small RNAs in Caenorhabditis elegans , 2001, Science.

[18]  L. Lim,et al.  An Abundant Class of Tiny RNAs with Probable Regulatory Roles in Caenorhabditis elegans , 2001, Science.

[19]  Reuven Agami,et al.  A large-scale RNAi screen in human cells identifies new components of the p53 pathway , 2004, Nature.

[20]  C. Burge,et al.  Vertebrate MicroRNA Genes , 2003, Science.

[21]  T. Tuschl,et al.  New microRNAs from mouse and human. , 2003, RNA.

[22]  Kazunari Taira,et al.  Effects on RNAi of the tight structure, sequence and position of the targeted region. , 2004, Nucleic acids research.

[23]  Rodrigo Lopez,et al.  Multiple sequence alignment with the Clustal series of programs , 2003, Nucleic Acids Res..

[24]  T. Tuschl,et al.  Identification of Novel Genes Coding for Small Expressed RNAs , 2001, Science.

[25]  Thomas L. Madden,et al.  Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. , 1997, Nucleic acids research.

[26]  V. Ambros,et al.  MicroRNAs and Other Tiny Endogenous RNAs in C. elegans , 2003, Current Biology.

[27]  Ji-Joon Song,et al.  The crystal structure of the Argonaute2 PAZ domain reveals an RNA binding motif in RNAi effector complexes , 2003, Nature Structural Biology.

[28]  C. Llave,et al.  Cleavage of Scarecrow-like mRNA Targets Directed by a Class of Arabidopsis miRNA , 2002, Science.

[29]  Edwards Allen,et al.  P1/HC-Pro, a viral suppressor of RNA silencing, interferes with Arabidopsis development and miRNA unction. , 2003, Developmental cell.

[30]  G. Ruvkun,et al.  A uniform system for microRNA annotation. , 2003, RNA.

[31]  D. Bartel MicroRNAs Genomics, Biogenesis, Mechanism, and Function , 2004, Cell.

[32]  Anton J. Enright,et al.  Identification of Virus-Encoded MicroRNAs , 2004, Science.

[33]  P. Sharp,et al.  Embryonic stem cell-specific MicroRNAs. , 2003, Developmental cell.

[34]  Walter Fontana,et al.  Fast folding and comparison of RNA secondary structures , 1994 .

[35]  Thomas Werner,et al.  Promoters can contribute to the elucidation of protein function. , 2003, Trends in biotechnology.

[36]  Julie Clayton,et al.  RNA interference: The silent treatment , 2004, Nature.

[37]  Julius Brennecke,et al.  Identification of Drosophila MicroRNA Targets , 2003, PLoS biology.

[38]  A. Aravin,et al.  Double-stranded RNA-mediated silencing of genomic tandem repeats and transposable elements in the D. melanogaster germline , 2001, Current Biology.

[39]  Sean R. Eddy,et al.  Rfam: an RNA family database , 2003, Nucleic Acids Res..

[40]  C. Burge,et al.  Prediction of Mammalian MicroRNA Targets , 2003, Cell.

[41]  A. Rougvie,et al.  The Caenorhabditis elegans hunchback-like gene lin-57/hbl-1 controls developmental time and is regulated by microRNAs. , 2003, Developmental cell.

[42]  S. Eddy Non–coding RNA genes and the modern RNA world , 2001, Nature Reviews Genetics.

[43]  Thomas Dandekar,et al.  RNA Motifs and Regulatory Elements , 2012, Springer Berlin Heidelberg.

[44]  E. Moss,et al.  Conservation of the heterochronic regulator Lin-28, its developmental expression and microRNA complementary sites. , 2003, Developmental biology.

[45]  B. Reinhart,et al.  Conservation of the sequence and temporal expression of let-7 heterochronic regulatory RNA , 2000, Nature.

[46]  A. Goga,et al.  RNA interference (RNAi) with RNase III-prepared siRNAs. , 2004, Methods in molecular biology.

[47]  Zdenek Moravek,et al.  Efficient RNA interference depends on global context of the target sequence: quantitative analysis of silencing efficiency using Eulerian graph representation of siRNA , 2022 .

[48]  Graziano Pesole,et al.  UTRdb and UTRsite: specialized databases of sequences and functional elements of 5' and 3' untranslated regions of eukaryotic mRNAs. Update 2002 , 2002, Nucleic Acids Res..

[49]  V. Ambros,et al.  The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14 , 1993, Cell.

[50]  Bruce A. Hay,et al.  The Drosophila MicroRNA Mir-14 Suppresses Cell Death and Is Required for Normal Fat Metabolism , 2003, Current Biology.

[51]  G. Ruvkun,et al.  Posttranscriptional regulation of the heterochronic gene lin-14 by lin-4 mediates temporal pattern formation in C. elegans , 1993, Cell.

[52]  B. Reinhart,et al.  Prediction of Plant MicroRNA Targets , 2002, Cell.

[53]  E. Lai Micro RNAs are complementary to 3′ UTR sequence motifs that mediate negative post-transcriptional regulation , 2002, Nature Genetics.

[54]  A. Pasquinelli,et al.  A Cellular Function for the RNA-Interference Enzyme Dicer in the Maturation of the let-7 Small Temporal RNA , 2001, Science.

[55]  Sam Griffiths-Jones,et al.  The microRNA Registry , 2004, Nucleic Acids Res..

[56]  Javier F. Palatnik,et al.  Control of leaf morphogenesis by microRNAs , 2003, Nature.

[57]  P. Saetrom,et al.  Predicting the efficacy of short oligonucleotides in antisense and RNAi experiments with boosted genetic programming. , 2004, Bioinformatics.

[58]  Gary Ruvkun,et al.  The Caenorhabditis elegans heterochronic gene lin-14 encodes a nuclear protein that forms a temporal developmental switch , 1989, Nature.

[59]  Konstantin Khrapko,et al.  A microRNA array reveals extensive regulation of microRNAs during brain development. , 2003, RNA.

[60]  W. Pardridge,et al.  In vivo knockdown of gene expression in brain cancer with intravenous RNAi in adult rats , 2003, The journal of gene medicine.

[61]  Neff Walker,et al.  A MicroRNA as a Translational Repressor of APETALA2 in Arabidopsis Flower Development , 2004 .