Preservice Teachers’ Understanding of the Relation Between a Fraction or Integer and Its Decimal Expansion

Many studies establish that students at all levels, including preservice elementary and middle school teachers, have considerable difficulty understanding the relationship between a rational number (fraction or integer) and its decimal expansion(s), including the idea that 0.9̄ = 1. This article reports on the mathematical performance of preservice elementary and middle school teachers who completed a specially designed unit on repeating decimals that was based on APOS theory and implemented using the ACE teaching cycle. Students enrolled in a content course on number and operation at a large southern university participated in the study. Two sections received the experimental treatment, and three sections followed a traditional approach. The quantitative results suggest that the students who received the experimental instruction made considerable progress in their development of an understanding of the specific equality between 0.9̄ and 1 and the more general relation between a rational number and its decimal expansion(s). The students in the control group made substantially less progresst.RésuméDe nombreuses études ont montré que les étudiants de tous les niveaux, y compris les futurs enseignants au primaire et au premier cycle du secondaire, éprouvent de sérieuses difficultés à saisir la relation qui unit un nombre rationnel (une fraction ou un entier relatif) et son développement décimale, y compris par exemple la notion que 0.9̄ = 1. Cet article présente un compte-rendu de la performance mathématique d’un groupe de futurs enseignants au primaire et au premier cycle du secondaire qui venaient de terminer une unité pédagogique portant spécifiquement sur la répétition décimale, fondée sur la théorie APOS et mise en pratique grâce au Cycle d’enseignement de l’ACE. Les participants à la recherche étaient des étudiants inscrits à un cours théorique sur les nombres et les opérations dans une grande université du sud. Deux sous-groupes ont pris part au cours expérimental, et trois ont suivi une approche traditionnelle. Les résultats quantitatifs indiquent que les étudiants du groupe expérimental ont amélioré considérablement leur niveau de compréhension de l’égalité spécifique entre 0.9̄ et 1, de mêe que la relation plus générale qui existe entre un nombre rationnel et son développement décimale. Les progrès des étudiants qui faisaient partie du groupe contrôle ont été beaucoup moins importants.

[1]  Steven R. Williams Predications of the Limit Concept: An Application of Repertory Grids , 2001 .

[2]  J. Hiebert,et al.  Conceptual and Procedural Knowledge in Mathematics: An Introductory Analysis , 1986 .

[3]  Steven R. Williams Models of Limit Held by College Calculus Students. , 1991 .

[4]  B. D. Castro Pre-service teachers’ mathematical reasoning as an imperative for codified conceptual pedagogy in algebra: a case study in teacher education , 2004 .

[5]  R. Skemp Relational Understanding and Instrumental Understanding. , 2006 .

[6]  E. J. Davis,et al.  Preservice Elementary Teachers' Misconceptions in Interpreting and Applying Decimals , 1991 .

[7]  L. Resnick,et al.  Conceptual Bases of Arithmetic Errors: The Case of Decimal Fractions. , 1989 .

[8]  Draga Vidakovic,et al.  Understanding the limit concept: Beginning with a coordinated process scheme , 1996 .

[9]  Rina Zazkis,et al.  On fractions and non-standard representations: Pre-service teachers' concepts , 1994 .

[10]  Ed Dubinsky,et al.  APOS: A Constructivist Theory of Learning in Undergraduate Mathematics Education Research , 2001 .

[11]  Michael B. Ward,et al.  Surprises from Mathematics Education Research: Student (Mis)use of Mathematical Definitions , 2004, Am. Math. Mon..

[12]  J. Piaget Le Point De Vue De Piaget , 1968 .

[13]  Tony Gardiner Infinite Processes in Elementary Mathematics How Much Should We Tell the Children , 1985 .

[14]  A. Olding Biology and knowledge , 2008 .

[15]  Ed Dubinsky,et al.  Some Historical Issues and Paradoxes Regarding the Concept of Infinity: An Apos Analysis: Part 2 , 2005 .

[16]  Pearla Nesher Are Mathematical Understanding and Algorithmic Performance Related , 1986 .

[17]  Mary Catherine O'Connor,et al.  “Can any Fraction be Turned into a Decimal?” A Case Study of a Mathematical Group Discussion , 2002 .

[18]  A. Sierpińska Humanities students and epistemological obstacles related to limits , 1987 .

[19]  Cynthia L. Stenger,et al.  A Search for a Constructivist Approach for Understanding the Uncountable Set P(N) , 2008 .

[20]  David Tall,et al.  Conflicts in the Learning of Real Numbers and Limits. , 1978 .

[21]  Jean Piaget,et al.  Part I: Cognitive development in children: Piaget development and learning , 1964 .

[22]  I. Putt,et al.  Preservice Teachers Ordering of Decimal Numbers: When More Is Smaller and Less Is Larger!. , 1995 .

[23]  Ed Dubinsky,et al.  A Framework for Research and Curriculum Development in Undergraduate Mathematics Educationjpeg , 2009 .

[24]  Is 0.999...= 1? , 1999 .

[25]  Jean Piaget Piaget’s Theory , 1976 .