On the generalized fractional derivatives and their Caputo modification

In this manuscript, we define the generalized fractional derivative on ACγ [a,b], the space of functions defined on [a,b] such that γn−1f ∈ AC[a,b], where γ = x1−ρ d dx . We present some of the properties of generalized fractional derivatives of these functions and then we define their Caputo version. c ©2017 All rights reserved.

[1]  Udita N. Katugampola A NEW APPROACH TO GENERALIZED FRACTIONAL DERIVATIVES , 2011, 1106.0965.

[2]  Feng Gao,et al.  Fractional Maxwell fluid with fractional derivative without singular kernel , 2016 .

[3]  Dumitru Baleanu,et al.  Caputo-type modification of the Hadamard fractional derivatives , 2012, Advances in Difference Equations.

[4]  Anatoly A. Kilbas,et al.  HADAMARD-TYPE FRACTIONAL CALCULUS , 2001 .

[5]  T. Abdeljawad Dual identities in fractional difference calculus within Riemann , 2011, 1112.5795.

[6]  Dumitru Baleanu,et al.  On Caputo modification of the Hadamard fractional derivatives , 2014, Advances in Difference Equations.

[7]  T. Abdeljawad On Delta and Nabla Caputo Fractional Differences and Dual Identities , 2011, 1102.1625.

[8]  H. Srivastava,et al.  Theory and Applications of Fractional Differential Equations , 2006 .

[9]  S. Arabia,et al.  Properties of a New Fractional Derivative without Singular Kernel , 2015 .

[10]  Agnieszka B. Malinowska,et al.  Fractional differential equations with dependence on the Caputo-Katugampola derivative , 2016, 1607.06913.

[11]  Feng Gao,et al.  A new fractional derivative involving the normalized sinc function without singular kernel , 2017, 1701.05590.

[12]  F. Mainardi,et al.  Recent history of fractional calculus , 2011 .

[13]  H. Kober ON FRACTIONAL INTEGRALS AND DERIVATIVES , 1940 .

[14]  A. Peterson,et al.  Discrete Fractional Calculus , 2016 .

[15]  M. Caputo,et al.  A new Definition of Fractional Derivative without Singular Kernel , 2015 .

[16]  F. Atici,et al.  Modeling with fractional difference equations , 2010 .

[17]  Udita N. Katugampola New approach to a generalized fractional integral , 2010, Appl. Math. Comput..

[18]  Dumitru Baleanu,et al.  Discrete fractional differences with nonsingular discrete Mittag-Leffler kernels , 2016 .

[19]  H. Srivastava,et al.  Local Fractional Integral Transforms and Their Applications , 2015 .

[20]  R. Magin Fractional Calculus in Bioengineering , 2006 .

[21]  I. Podlubny Fractional differential equations , 1998 .