Improvement of stratospheric aerosol extinction retrieval from OMPS/LP using a new aerosol model.

The Ozone Mapping and Profiler Suite Limb Profiler (OMPS/LP) has been flying on the Suomi NPP satellite since October 2011. It is designed to produce ozone and aerosol vertical profiles at ~2 km vertical resolution over the entire sunlit globe. Aerosol extinction profiles are computed with Mie theory using radiances measured at 675 nm. The operational Version 1.0 (V1.0) aerosol extinction retrieval algorithm assumes a bimodal lognormal aerosol size distribution (ASD) whose parameters were derived by combining an in situ measurement of aerosol microphysics with the SAGE II aerosol extinction climatology. Internal analysis indicates that this bimodal lognormal ASD does not sufficiently explain the spectral dependence of LP measured radiances. In this paper we describe the derivation of an improved aerosol size distribution, designated Version 1.5 (V1.5), for the LP retrieval algorithm. The new ASD uses a gamma function distribution that is derived from Community Aerosol and Radiation Model for Atmospheres (CARMA) calculated results. A cumulative distribution fit derived from the gamma function ASD gives better agreement with CARMA results at small particle radii than bimodal or unimodal functions. The new ASD also explains the spectral dependence of LP measured radiances better than the V1.0 ASD. We find that the impact of our choice of ASD on the retrieved extinctions varies strongly with the underlying reflectivity of the scene. Initial comparisons with co-located extinction profiles retrieved at 676 nm from the SAGE III/ISS instrument show a significant improvement in agreement for the LP V1.5 retrievals. Zonal mean extinction profiles agree to within 10% between 19-29 km, and regression fits of collocated samples show improved correlation and reduced scatter compared to the V1.0 product. This improved agreement will motivate development of more sophisticated ASDs from CARMA results that incorporate latitude, altitude, and seasonal variations in aerosol properties.

[1]  William P. Chu,et al.  SAGE II inversion algorithm , 1989 .

[2]  D. Degenstein,et al.  Odin-OSIRIS stratospheric aerosol data product and SAGE III intercomparison , 2011 .

[3]  P. Bhartia,et al.  A New Algorithm for Detecting Cloud Height using OMPS/LP Measurements , 2015 .

[4]  P. Bhartia,et al.  Impact of aerosol size distribution on extinction and spectral dependence of radiances measured by the OMPS Limb profiler instrument , 2018 .

[5]  R. Neely,et al.  Composition and physical properties of the Asian Tropopause Aerosol Layer and the North American Tropospheric Aerosol Layer , 2015, Geophysical research letters.

[6]  T. Deshler A review of global stratospheric aerosol: Measurements, importance, life cycle, and local stratospheric aerosol , 2008 .

[7]  W. Gao,et al.  Earth Science Satellite Remote Sensing , 2006 .

[8]  Robert Damadeo,et al.  SAGE version 7.0 algorithm: application to SAGE II , 2013 .

[9]  R. C. Malone,et al.  A multidimensional model for aerosols - Description of computational analogs , 1988 .

[10]  J. Burrows,et al.  A study of the approaches used to retrieve aerosol extinction, as applied to limb observations made by OSIRIS and SCIAMACHY , 2018, Atmospheric Measurement Techniques.

[11]  G. Barrot,et al.  Global ozone monitoring by occultation of stars: an overview of GOMOS measurements on ENVISAT , 2010 .

[12]  M. Chahine Inverse Problems in Radiative Transfer: Determination of Atmospheric Parameters , 1970 .

[13]  K. F. Palmer,et al.  Optical constants of sulfuric Acid; application to the clouds of venus? , 1975, Applied optics.

[14]  William P. Chu,et al.  SAGE III/EOS , 1998, Asia-Pacific Environmental Remote Sensing.

[15]  J. Liley,et al.  Thirty years of in situ stratospheric aerosol size distribution measurements from Laramie, Wyoming (41°N), using balloon‐borne instruments , 2003 .

[16]  K J Thome,et al.  Numerical technique for solving the radiative transfer equation for a spherical shell atmosphere. , 1994, Applied optics.

[17]  M. McCormick,et al.  Satellite studies of the stratospheric aerosol , 1979 .

[18]  D. Degenstein,et al.  Stratospheric aerosol particle size information in Odin-OSIRIS limb scatter spectra , 2013 .

[19]  R. Turco,et al.  A One-Dimensional Model Describing Aerosol Formation and Evolution in the Stratosphere: I. Physical Processes and Mathematical Analogs , 1979 .

[20]  Makiko Sato,et al.  Total volcanic stratospheric aerosol optical depths and implications for global climate change , 2014 .

[21]  T. Deshler,et al.  On the accuracy of stratospheric aerosol extinction derived from in situ size distribution measurements and surface area density derived from remote SAGE II and HALOE extinction measurements , 2015 .

[22]  Ping Yang,et al.  Impact of radiatively interactive dust aerosols in the NASA GEOS‐5 climate model: Sensitivity to dust particle shape and refractive index , 2014 .

[23]  P. Chylek,et al.  Infrared Emittance of Water Clouds , 1992 .

[24]  P. Bhartia,et al.  Gauss-Seidel Limb Scattering (GSLS) radiative transfer model development in support of the Ozone Mapping and Profiler Suite (OMPS) Limb Profiler mission , 2014 .

[25]  L. Froidevaux,et al.  Validation of ozone profile retrievals derived from the OMPS LP version 2.5 algorithm against correlative satellite measurements , 2017 .

[26]  P. Bhartia,et al.  OMPS Limb Profiler instrument performance assessment , 2014 .

[27]  J. M. English,et al.  Microphysical simulations of new particle formation in the upper troposphere and lower stratosphere , 2011 .

[28]  L. Thomason,et al.  SAGE II measurements of stratospheric aerosol properties at non-volcanic levels , 2007 .

[29]  B. Vollmer,et al.  Global Precipitation Measurement (GPM) Mission Products and Services at the NASA Goddard Earth Sciences (GES) Data and Information Services Center (DISC). , 2017, Bulletin of the American Meteorological Society.

[30]  Larry W. Thomason,et al.  Improved stratospheric aerosol extinction profiles from SCIAMACHY: validation and sample results , 2015 .

[31]  Liisa Oikarinen,et al.  Comparison of radiative transfer models for limb‐viewing scattered sunlight measurements , 2004 .

[32]  P. B. Russell,et al.  Physical and optical properties of the Pinatubo volcanic aerosol: Aircraft observations with impactors and a Sun‐tracking photometer , 1994 .

[33]  D. Winker,et al.  Overview of the CALIPSO Mission and CALIOP Data Processing Algorithms , 2009 .

[34]  E. J. Llewellyn,et al.  Retrieval of stratospheric aerosol size information from OSIRIS limb scattered sunlight spectra , 2008 .

[35]  R. Turco,et al.  A one-dimensional model describing aerosol formation and evolution in the stratosphere: II. Sensitivity studies and comparison with observations , 1979 .

[36]  Lawrence E. Flynn,et al.  The Ozone Mapping and Profiler Suite , 2006 .

[37]  H. Bovensmann,et al.  Aerosol particle size distribution in the stratosphere retrieved from SCIAMACHY limb measurements , 2017 .

[38]  Didier Rault,et al.  The OMPS Limb Profiler Environmental Data Record Algorithm Theoretical Basis Document and Expected Performance , 2013, IEEE Transactions on Geoscience and Remote Sensing.

[39]  Brent N. Holben,et al.  Saharan dust transport to the Caribbean during PRIDE: 1. Influence of dust sources and removal mechanisms on the timing and magnitude of downwind aerosol optical depth events from simulations of in situ and remote sensing observations , 2003 .

[40]  J. M. English,et al.  Microphysical simulations of sulfur burdens from stratospheric sulfur geoengineering , 2012 .

[41]  B. Herman,et al.  Comparison of the Gauss-Seidel spherical polarized radiative transfer code with other radiative transfer codes. , 1995, Applied optics.

[42]  Glen Jaross,et al.  Altitude registration of limb-scattered radiation , 2016 .

[43]  D. Marsh,et al.  Numerical simulations of the three-dimensional distribution of meteoric dust in the mesosphere and upper stratosphere , 2008 .

[44]  M. Pitts,et al.  An evaluation of the SAGE III version 4 aerosol extinction coefficient and water vapor data products , 2009 .

[45]  Philippe Xu,et al.  The Ozone Mapping and Profiler Suite (OMPS) Limb Profiler (LP) Version 1 aerosol extinction retrieval algorithm: theoretical basis , 2017 .