Ontology Integration for Linked Data

The Linked Open Data cloud contains tremendous amounts of interlinked instances with abundant knowledge for retrieval. However, because the ontologies are large and heterogeneous, it is time-consuming to learn all the ontologies manually and it is difficult to learn the properties important for describing instances of a specific class. To construct an ontology that helps users to easily access various data sets, we propose a semi-automatic system, called the Framework for InTegrating Ontologies, that can reduce the heterogeneity of the ontologies and retrieve frequently used core properties for each class. The framework consists of three main components: graph-based ontology integration, machine-learning-based approach for finding the core ontology classes and properties, and integrated ontology constructor. By analyzing the instances of linked data sets, this framework constructs a high-quality integrated ontology, which is easily understandable and effective in knowledge acquisition from various data sets using simple SPARQL queries.

[1]  Graeme Hirst,et al.  Lexical chains as representations of context for the detection and correction of malapropisms , 1995 .

[2]  Tim Berners-Lee,et al.  Linked Data - The Story So Far , 2009, Int. J. Semantic Web Inf. Syst..

[3]  J. Euzenat,et al.  Ontology Matching , 2007, Springer Berlin Heidelberg.

[4]  Ryutaro Ichise,et al.  Graph-based ontology analysis in the linked open data , 2012, I-SEMANTICS '12.

[5]  Yi Li,et al.  RiMOM: A Dynamic Multistrategy Ontology Alignment Framework , 2009, IEEE Transactions on Knowledge and Data Engineering.

[6]  Deborah L. McGuinness,et al.  SameAs Networks and Beyond: Analyzing Deployment Status and Implications of owl: sameAs in Linked Data , 2010, International Semantic Web Conference.

[7]  Asunción Gómez-Pérez,et al.  Validating Ontologies with OOPS! , 2012, EKAW.

[8]  Ryutaro Ichise,et al.  Detecting Hidden Relations in Geographic Data , 2010 .

[9]  Fausto Giunchiglia,et al.  S-Match: an Algorithm and an Implementation of Semantic Matching , 2004, ESWS.

[10]  Johanna Völker,et al.  Learning Disjointness for Debugging Mappings between Lightweight Ontologies , 2008, EKAW.

[11]  Jérôme Euzenat,et al.  Ontology Matching: State of the Art and Future Challenges , 2013, IEEE Transactions on Knowledge and Data Engineering.

[12]  Siddharth Patwardhan,et al.  Incorporating Dictionary and Corpus Information into a Context Vector Measure of Semantic Relatednes , 2003 .

[13]  George A. Miller,et al.  Using Corpus Statistics and WordNet Relations for Sense Identification , 1998, CL.

[14]  Dekang Lin,et al.  An Information-Theoretic Definition of Similarity , 1998, ICML.

[15]  W. Winkler Overview of Record Linkage and Current Research Directions , 2006 .

[16]  Ryutaro Ichise An Analysis of Multiple Similarity Measures for Ontology Mapping Problem , 2010, Int. J. Semantic Comput..

[17]  Amit P. Sheth,et al.  Ontology Alignment for Linked Open Data , 2010, SEMWEB.

[18]  L. Stein,et al.  OWL Web Ontology Language - Reference , 2004 .

[19]  Ian Horrocks,et al.  OWL Web Ontology Language Reference-W3C Recommen-dation , 2004 .

[20]  Jérôme Euzenat,et al.  Towards a principled approach to semantic interoperability , 2001, OIS@IJCAI.

[21]  David W. Conrath,et al.  Semantic Similarity Based on Corpus Statistics and Lexical Taxonomy , 1997, ROCLING/IJCLCLP.

[22]  Michel Klein,et al.  Combining and relating ontologies: an analysis of problems and solutions , 2001, OIS@IJCAI.

[23]  Ramakrishnan Srikant,et al.  Fast Algorithms for Mining Association Rules in Large Databases , 1994, VLDB.

[24]  Ted Pedersen,et al.  WordNet::Similarity - Measuring the Relatedness of Concepts , 2004, NAACL.

[25]  Martha Palmer,et al.  Verb Semantics and Lexical Selection , 1994, ACL.

[26]  Philip Resnik,et al.  Using Information Content to Evaluate Semantic Similarity in a Taxonomy , 1995, IJCAI.

[27]  Christopher D. Manning,et al.  Introduction to Information Retrieval , 2010, J. Assoc. Inf. Sci. Technol..

[28]  Ryutaro Ichise,et al.  Instance-Based Ontological Knowledge Acquisition , 2013, ESWC.

[29]  Craig A. Knoblock,et al.  Discovering Concept Coverings in Ontologies of Linked Data Sources , 2012, International Semantic Web Conference.

[30]  Tom Heath,et al.  Linked Data: Evolving the Web into a Global Data Space , 2011, Linked Data.

[31]  R. Agarwal Fast Algorithms for Mining Association Rules , 1994, VLDB 1994.

[32]  Ted Pedersen,et al.  Extended Gloss Overlaps as a Measure of Semantic Relatedness , 2003, IJCAI.

[33]  Ryutaro Ichise,et al.  Integrating Ontologies Using Ontology Learning Approach , 2013, IEICE Trans. Inf. Syst..

[34]  Dan Brickley,et al.  Rdf vocabulary description language 1.0 : Rdf schema , 2004 .

[35]  Amit P. Sheth,et al.  Contextual Ontology Alignment of LOD with an Upper Ontology: A Case Study with Proton , 2011, ESWC.

[36]  Hyoil Han,et al.  A survey on ontology mapping , 2006, SGMD.

[37]  James Pustejovsky Proceedings of the 32nd annual meeting on Association for Computational Linguistics , 1994 .

[38]  Craig A. Knoblock,et al.  Linking and Building Ontologies of Linked Data , 2010, SEMWEB.

[39]  Jérôme David,et al.  Matching directories and OWL ontologies with AROMA , 2006, CIKM '06.

[40]  Ron Kohavi,et al.  The Power of Decision Tables , 1995, ECML.

[41]  P. Shannon,et al.  Cytoscape: a software environment for integrated models of biomolecular interaction networks. , 2003, Genome research.