RANS MODELING OF GAS JET IMPINGING ONTO A DEFORMABLE LIQUID INTERFACE

ةيضرلأا ةيبذاجلا ةوقو يحطسلا رتوتلا ةوق ريثأت نم لك يلع لمتشي يذلاو يروفانلا . تمدق دقو اذھ ماظنلا اذھ يف ثدحت يتلا ةدقعملا تاءارجلإل ديفم فيصوتو ةحضاو ةروص اھيلع لوصحلا مت يتلا جئاتنلا يروفانلا . The present paper introduces a numerical model for one of the most important fluid-fluid interaction problems in industrial engineering applications, mainly a gas jet impinging perpendicularly onto a liquid interface. The Reynolds-averaged conservation equations and the k-e turbulence model are coupled with the level set approach to describe the behavior of the jetting system governed by the gas and liquid flows. The RANS equations for both phases are described in the axisymmetric cylindrical coordinates and solved separately using the projection method on a non-staggered grid. The interfacial boundary conditions or jump conditions are applied at the interface of the two immiscible fluids. An improvement of the treatment of the convection term and interpolation method that was used to obtain the intermediate volume flux defined on the cell faces is presented. The topological changes of the interface are captured implicitly on the Eulerian grid by the zero level set function. The present algorithm showed a remarkable capability to handle the jetting system with high density ratio including the surface tension and gravity effects. The obtained numerical results provide useful insight and a better understanding to the highly complex flow encountered in such processes.

[1]  M. Oevermann Ein Finite-Volumen-Verfahren auf unstrukturierten Dreiecksgittern zur Berechnung turbulenter Diffusionsflammen in kompressiblen Strömungsfeldern , 1998 .

[2]  F. White Viscous Fluid Flow , 1974 .

[3]  NUMERICAL MODELING OF THE INTERFACIAL INSTABILITY IN TWO-PHASE FLOWS CONSIDERING BUOYANCY AND CAPILLARY PHENOMENA , 2007 .

[4]  Marcus Herrmann,et al.  Calculation of droplet deformationby surface tension effects usingthe level set method , 2002 .

[5]  K Wieghardt,et al.  On the turbulent friction layer for rising pressure , 1951 .

[6]  E. T. Turkdogan Fluid dynamics of gas jets impinging on surface of liquids , 1966 .

[7]  R. Banks,et al.  Experimental investigation of the penetration of a high-velocity gas jet through a liquid surface , 1963, Journal of Fluid Mechanics.

[8]  R. Pletcher,et al.  Computational Fluid Mechanics and Heat Transfer. By D. A ANDERSON, J. C. TANNEHILL and R. H. PLETCHER. Hemisphere, 1984. 599 pp. $39.95. , 1986, Journal of Fluid Mechanics.

[9]  Jan Berghmans,et al.  Theoretical investigation of the interfacial stability of inviscid fluids in motion, considering surface tension , 1972, Journal of Fluid Mechanics.

[10]  E. Bender Numerical heat transfer and fluid flow. Von S. V. Patankar. Hemisphere Publishing Corporation, Washington – New York – London. McGraw Hill Book Company, New York 1980. 1. Aufl., 197 S., 76 Abb., geb., DM 71,90 , 1981 .

[11]  S. Osher,et al.  A level set approach for computing solutions to incompressible two-phase flow , 1994 .

[12]  Amit Chatterjee Impingement of gas jets on liquid surfaces , 1970 .

[13]  W. Olmstead,et al.  Depression of an infinite liquid surface by an incompressible gas jet , 1964, Journal of Fluid Mechanics.

[14]  Israel J Wygnanski,et al.  Some measurements in the self-preserving jet , 1969, Journal of Fluid Mechanics.

[15]  M. Sichel,et al.  Cavities formed on liquid surfaces by impinging gaseous jets , 1969, Journal of Fluid Mechanics.

[16]  Björn Hübner Simultane Analyse von Bauwerk-Wind-Wechselwirkungen , 2003 .

[17]  M. S. Lee,et al.  Fluid flow and surface waves in the BOF , 2002 .

[18]  B. Launder,et al.  The numerical computation of turbulent flows , 1990 .

[19]  James A. Sethian,et al.  The Fast Construction of Extension Velocities in Level Set Methods , 1999 .

[20]  J. Vanden-Broeck DEFORMATION OF A LIQUID SURFACE BY AN IMPINGING GAS JET , 1981 .

[21]  G. Evans,et al.  Computational fluid dynamics modelling of gas jets impinging onto liquid pools , 2006 .

[22]  S. Patankar Numerical Heat Transfer and Fluid Flow , 2018, Lecture Notes in Mechanical Engineering.