Implementation of extended Lagrangian dynamics in GROMACS for polarizable simulations using the classical Drude oscillator model

Explicit treatment of electronic polarization in empirical force fields used for molecular dynamics simulations represents an important advancement in simulation methodology. A straightforward means of treating electronic polarization in these simulations is the inclusion of Drude oscillators, which are auxiliary, charge‐carrying particles bonded to the cores of atoms in the system. The additional degrees of freedom make these simulations more computationally expensive relative to simulations using traditional fixed‐charge (additive) force fields. Thus, efficient tools are needed for conducting these simulations. Here, we present the implementation of highly scalable algorithms in the GROMACS simulation package that allow for the simulation of polarizable systems using extended Lagrangian dynamics with a dual Nosé–Hoover thermostat as well as simulations using a full self‐consistent field treatment of polarization. The performance of systems of varying size is evaluated, showing that the present code parallelizes efficiently and is the fastest implementation of the extended Lagrangian methods currently available for simulations using the Drude polarizable force field.

[1]  Alexander D. MacKerell,et al.  CHARMM fluctuating charge force field for proteins: II Protein/solvent properties from molecular dynamics simulations using a nonadditive electrostatic model , 2004, J. Comput. Chem..

[2]  Richard A. Friesner,et al.  Constructing ab initio force fields for molecular dynamics simulations , 1998 .

[3]  Pengyu Y. Ren,et al.  Consistent treatment of inter‐ and intramolecular polarization in molecular mechanics calculations , 2002, J. Comput. Chem..

[4]  Alexander D. MacKerell,et al.  Optimization of the additive CHARMM all-atom protein force field targeting improved sampling of the backbone φ, ψ and side-chain χ(1) and χ(2) dihedral angles. , 2012, Journal of chemical theory and computation.

[5]  Michael F. Crowley,et al.  New faster CHARMM molecular dynamics engine , 2013, J. Comput. Chem..

[6]  Benoît Roux,et al.  A polarizable force field of dipalmitoylphosphatidylcholine based on the classical Drude model for molecular dynamics simulations of lipids. , 2013, The journal of physical chemistry. B.

[7]  T. Darden,et al.  Particle mesh Ewald: An N⋅log(N) method for Ewald sums in large systems , 1993 .

[8]  Harry A. Stern,et al.  Development of a polarizable force field for proteins via ab initio quantum chemistry: First generation model and gas phase tests , 2002, J. Comput. Chem..

[9]  Gerhard Hummer,et al.  System-Size Dependence of Diffusion Coefficients and Viscosities from Molecular Dynamics Simulations with Periodic Boundary Conditions , 2004 .

[10]  Alexander D. MacKerell,et al.  All‐atom polarizable force field for DNA based on the classical drude oscillator model , 2014, J. Comput. Chem..

[11]  Laxmikant V. Kalé,et al.  Scalable molecular dynamics with NAMD , 2005, J. Comput. Chem..

[12]  Gerrit Groenhof,et al.  GROMACS: Fast, flexible, and free , 2005, J. Comput. Chem..

[13]  Benoît Roux,et al.  Modeling induced polarization with classical Drude oscillators: Theory and molecular dynamics simulation algorithm , 2003 .

[14]  L. Verlet Computer "Experiments" on Classical Fluids. I. Thermodynamical Properties of Lennard-Jones Molecules , 1967 .

[15]  Alexander D. MacKerell,et al.  Induced Polarization Influences the Fundamental Forces in DNA Base Flipping , 2014, The journal of physical chemistry letters.

[16]  W. C. Swope,et al.  A computer simulation method for the calculation of equilibrium constants for the formation of physi , 1981 .

[17]  Taehoon Kim,et al.  CHARMM‐GUI: A web‐based graphical user interface for CHARMM , 2008, J. Comput. Chem..

[18]  David van der Spoel,et al.  Molecular Dynamics Simulations of Water with Novel Shell-Model Potentials , 2001 .

[19]  C. Bugg,et al.  Structure of ubiquitin refined at 1.8 A resolution. , 1987, Journal of molecular biology.

[20]  Peter M. Kasson,et al.  GROMACS 4.5: a high-throughput and highly parallel open source molecular simulation toolkit , 2013, Bioinform..

[21]  Klaus Schulten,et al.  High-performance scalable molecular dynamics simulations of a polarizable force field based on classical Drude oscillators in NAMD. , 2011, The journal of physical chemistry letters.

[22]  Anastassia N Alexandrova,et al.  Polarization Effects for Hydrogen-Bonded Complexes of Substituted Phenols with Water and Chloride Ion. , 2007, Journal of chemical theory and computation.

[23]  Anna-Pitschna E. Kunz,et al.  Development of a nonlinear classical polarization model for liquid water and aqueous solutions: COS/D. , 2009, The journal of physical chemistry. A.

[24]  B. Thole Molecular polarizabilities calculated with a modified dipole interaction , 1981 .

[25]  Alexander D. MacKerell,et al.  Force Field for Peptides and Proteins based on the Classical Drude Oscillator. , 2013, Journal of chemical theory and computation.

[26]  Pengyu Y. Ren,et al.  The Polarizable Atomic Multipole-based AMOEBA Force Field for Proteins. , 2013, Journal of chemical theory and computation.

[27]  Charles L. Brooks,et al.  CHARMM fluctuating charge force field for proteins: I parameterization and application to bulk organic liquid simulations , 2004, J. Comput. Chem..

[28]  M. Levitt,et al.  Theoretical studies of enzymic reactions: dielectric, electrostatic and steric stabilization of the carbonium ion in the reaction of lysozyme. , 1976, Journal of molecular biology.

[29]  G. Ciccotti,et al.  Numerical Integration of the Cartesian Equations of Motion of a System with Constraints: Molecular Dynamics of n-Alkanes , 1977 .

[30]  Hoover,et al.  Canonical dynamics: Equilibrium phase-space distributions. , 1985, Physical review. A, General physics.

[31]  Alexander D. MacKerell,et al.  Balancing the Interactions of Ions, Water, and DNA in the Drude Polarizable Force Field , 2014, The journal of physical chemistry. B.

[32]  Alexander D. MacKerell,et al.  Differential Impact of the Monovalent Ions Li+, Na+, K+, and Rb+ on DNA Conformational Properties , 2014, The journal of physical chemistry letters.

[33]  W. L. Jorgensen,et al.  Comparison of simple potential functions for simulating liquid water , 1983 .

[34]  Jianpeng Ma,et al.  CHARMM: The biomolecular simulation program , 2009, J. Comput. Chem..

[35]  C. R. Mann The Theory of Optics , 1903, Nature.

[36]  B. Berne,et al.  Combined fluctuating charge and polarizable dipole models: Application to a five-site water potential function , 2001 .

[37]  Bruce J. Berne,et al.  Dynamical Fluctuating Charge Force Fields: The Aqueous Solvation of Amides , 1996 .

[38]  Alexander D. MacKerell,et al.  Polarizable Empirical Force Field for Hexopyranose Monosaccharides Based on the Classical Drude Oscillator , 2014, The journal of physical chemistry. B.

[39]  T. Darden,et al.  A smooth particle mesh Ewald method , 1995 .

[40]  Carsten Kutzner,et al.  GROMACS 4:  Algorithms for Highly Efficient, Load-Balanced, and Scalable Molecular Simulation. , 2008, Journal of chemical theory and computation.

[41]  P. Kollman,et al.  Settle: An analytical version of the SHAKE and RATTLE algorithm for rigid water models , 1992 .

[42]  Steven J. Stuart,et al.  Dynamical fluctuating charge force fields: Application to liquid water , 1994 .

[43]  Alexander D. MacKerell,et al.  Induction of peptide bond dipoles drives cooperative helix formation in the (AAQAA)3 peptide. , 2014, Biophysical journal.

[44]  S. Nosé A unified formulation of the constant temperature molecular dynamics methods , 1984 .

[45]  Alexander D. MacKerell,et al.  Recent Advances in Polarizable Force Fields for Macromolecules: Microsecond Simulations of Proteins Using the Classical Drude Oscillator Model , 2014, The journal of physical chemistry letters.

[46]  Alexander D. MacKerell,et al.  Development of a polarizable intermolecular potential function (PIPF) for liquid amides and alkanes. , 2007, Journal of chemical theory and computation.

[47]  Mark E. Tuckerman,et al.  Explicit reversible integrators for extended systems dynamics , 1996 .

[48]  Benoît Roux,et al.  Atomic Level Anisotropy in the Electrostatic Modeling of Lone Pairs for a Polarizable Force Field Based on the Classical Drude Oscillator. , 2006, Journal of chemical theory and computation.

[49]  Alexander D. MacKerell,et al.  A polarizable model of water for molecular dynamics simulations of biomolecules , 2006 .

[50]  Alexander D. MacKerell,et al.  Simulating Monovalent and Divalent Ions in Aqueous Solution Using a Drude Polarizable Force Field. , 2010, Journal of chemical theory and computation.