3D nanostructured conductive polymer hydrogels for high-performance electrochemical devices

Conducting polymer hydrogels (CPHs) represent a unique class of materials that synergize the advantageous features of hydrogels and organic conductors and have been used in many applications such as bioelectronics and energy storage devices. This perspective provides a brief overview of current research activities in the field of three-dimensional (3D) nanostructured CPHs for high-performance electrochemical devices. The synthesis methods of conventional conductive polymers (CPs) and hydrogels are outlined with emphasis on newly developed methods for the preparation of 3D nanostructured CPs and CPHs. Following this discussion is an outline of the applications of 3D CPH nanostructures with particular focus on those applications in which nanostructured CPHs are clearly advantageous over their conventional counterparts. Other potential applications of nanostructured CPHs are also discussed in this perspective along with the main challenges and future research directions for this new class of conductive hydrogels.

[1]  Allman Introductory Lecture , 1855, Edinburgh medical journal.

[2]  G. S. Wilson,et al.  Rotating ring-disk enzyme electrode for biocatalysis kinetic studies and characterization of the immobilized enzyme layer , 1980 .

[3]  C. R. Martin,et al.  Electronically conductive polymer fibers with mesoscopic diameters show enhanced electronic conductivities , 1989 .

[4]  J. B. Higgins,et al.  A new family of mesoporous molecular sieves prepared with liquid crystal templates , 1992 .

[5]  Chun-Guey Wu,et al.  Conducting Polyaniline Filaments in a Mesoporous Channel Host , 1994, Science.

[6]  Shimshon Gottesfeld,et al.  Conducting polymers as active materials in electrochemical capacitors , 1994 .

[7]  G. Wallace,et al.  Preparation of hydrogel/conducting polymer composites , 1994 .

[8]  Charles R. Martin,et al.  Synthesis of polymeric microcapsule arrays and their use for enzyme immobilization , 1994, Nature.

[9]  Naoya Ogata,et al.  Reactive supramolecular assemblies of mucopolysaccharide, polypyrrole and protein as controllable biocomposites for a new generation of ‘intelligent biomaterials’ , 1994 .

[10]  Charles R. Martin,et al.  Template Synthesis of Electronically Conductive Polymer Nanostructures , 1995 .

[11]  Geoffrey M. Spinks,et al.  Mechanism of electromechanical actuation in polypyrrole , 1995 .

[12]  T. F. Otero,et al.  Bilayer dimensions and movement in artificial muscles , 1997 .

[13]  O. Inganäs,et al.  Conducting Polymer Hydrogels as 3D Electrodes: Applications for Supercapacitors , 1999 .

[14]  Gordon G. Wallace,et al.  Incorporation of Erythrocytes into Polypyrrole to Form the Basis of a Biosensor to Screen for Rhesus (D) Blood Groups and Rhesus (D) Antibodies , 1999 .

[15]  Elisabeth Smela,et al.  Surprising Volume Change in PPy(DBS): An Atomic Force Microscopy Study , 1999 .

[16]  R. Lennox,et al.  Selective Templated Growth of Polypyrrole Strands on Lipid Tubule Edges , 2000 .

[17]  B. C. Kim,et al.  Electroformation of conducting polymers in a hydrogel support matrix , 2000 .

[18]  Yoshihito Osada,et al.  Environmental responses of polythiophene hydrogels , 2000 .

[19]  M. Madou,et al.  Microactuators toward microvalves for responsive controlled drug delivery , 2000 .

[20]  Andreas Greiner,et al.  Polymer, Metal, and Hybrid Nano‐ and Mesotubes by Coating Degradable Polymer Template Fibers (TUFT Process) , 2000 .

[21]  Kevin W. Eberman,et al.  Colossal Reversible Volume Changes in Lithium Alloys , 2001 .

[22]  A. T. Johnson,et al.  Electrostatically-generated nanofibers of electronic polymers , 2001 .

[23]  Andreas Greiner,et al.  Nanostructured Fibers via Electrospinning , 2001 .

[24]  A. Heeger,et al.  Semiconducting and Metallic Polymers: The Fourth Generation of Polymeric Materials , 2001, Angewandte Chemie.

[25]  S. Sershen,et al.  Implantable, polymeric systems for modulated drug delivery. , 2002, Advanced drug delivery reviews.

[26]  Jindřich Kopeček,et al.  Polymer chemistry: Swell gels , 2002, Nature.

[27]  A. Guiseppi-Elie,et al.  Polypyrrole-hydrogel composites for the construction of clinically important biosensors. , 2002, Biosensors & bioelectronics.

[28]  Soon Ho Chang,et al.  Symmetric redox supercapacitor with conducting polyaniline electrodes , 2002 .

[29]  T. F. Otero,et al.  A sensing muscle , 2003 .

[30]  A. Guiseppi-Elie,et al.  Synthesis and hydration properties of pH-sensitive p(HEMA)-based hydrogels containing 3-(trimethoxysilyl)propyl methacrylate. , 2003, Biomacromolecules.

[31]  Olle Inganäs,et al.  Hydrogels of a conducting conjugated polymer as 3-D enzyme electrode. , 2003, Biosensors & bioelectronics.

[32]  L. Cao,et al.  Carbon‐Nanotube‐Templated Assembly of Rare‐Earth Phthalocyanine Nanowires , 2003 .

[33]  T. Chou,et al.  Fabrication of glucose oxidase/polypyrrole biosensor by galvanostatic method in various pH aqueous solutions. , 2003, Biosensors & bioelectronics.

[34]  J. Travas-sejdic,et al.  Conducting polymers as free radical scavengers , 2004 .

[35]  Xinyu Zhang,et al.  Bulk synthesis of polypyrrole nanofibers by a seeding approach. , 2004, Journal of the American Chemical Society.

[36]  David C. Martin,et al.  Conducting polymers grown in hydrogel scaffolds coated on neural prosthetic devices. , 2004, Journal of biomedical materials research. Part A.

[37]  Guojin Zhang,et al.  Polyaniline nanowires on Si surfaces fabricated with DNA templates. , 2004, Journal of the American Chemical Society.

[38]  Richard G Compton,et al.  Glucose biosensor prepared by glucose oxidase encapsulated sol-gel and carbon-nanotube-modified basal plane pyrolytic graphite electrode. , 2004, Analytical biochemistry.

[39]  Hong Dong,et al.  Sub-micrometer conducting polyaniline tubes prepared from polymer fiber templates , 2004 .

[40]  T. D. Hatchard,et al.  In Situ XRD and Electrochemical Study of the Reaction of Lithium with Amorphous Silicon , 2004 .

[41]  Larry A. Nagahara,et al.  A Conducting Polymer Nanojunction Sensor for Glucose Detection , 2004 .

[42]  Joon Hak Oh,et al.  A facile synthesis of polypyrrole nanotubes using a template-mediated vapor deposition polymerization and the conversion to carbon nanotubes. , 2004, Chemical communications.

[43]  Xinyu Zhang,et al.  Narrow pore-diameter polypyrrole nanotubes. , 2005, Journal of the American Chemical Society.

[44]  S. Foulger,et al.  1-Dimensional structures of poly(3,4-ethylenedioxythiophene)(PEDOT): a chemical route to tubes, rods, thimbles, and belts. , 2005, Chemical communications.

[45]  L. M. Lira,et al.  Conducting polymer–hydrogel composites for electrochemical release devices: Synthesis and characterization of semi-interpenetrating polyaniline–polyacrylamide networks , 2005 .

[46]  R. Gangopadhyay,et al.  Conducting polymer gel : formation of a novel semi-IPN from polyaniline and crosslinked poly(2-acrylamido-2-methyl propanesulphonicacid) , 2005 .

[47]  K. Akagi,et al.  Electrochemical polymerization of 3,4-ethylenedioxythiophene in a DNA liquid-crystal electrolyte , 2005 .

[48]  Wanzhi. Wei,et al.  Glucose biosensor based on platinum microparticles dispersed in nano-fibrous polyaniline. , 2005, Biosensors & bioelectronics.

[49]  A. MacDiarmid,et al.  Chemical synthesis of PEDOT nanofibers. , 2005, Chemical communications.

[50]  J. Romero‐García,et al.  Enzymatic synthesis of colloidal polyaniline particles , 2006 .

[51]  Adam Heller,et al.  Electron-conducting redox hydrogels: Design, characteristics and synthesis. , 2006, Current opinion in chemical biology.

[52]  M. Abidian,et al.  Conducting‐Polymer Nanotubes for Controlled Drug Release , 2006, Advanced materials.

[53]  Y. Berdichevsky,et al.  Polypyrrole Nanowire Actuators , 2006 .

[54]  S. H. Park,et al.  Metallic transport in polyaniline , 2006, Nature.

[55]  Craig J Hawker,et al.  Cross-linked block copolymer micelles: functional nanostructures of great potential and versatility. , 2006, Chemical Society reviews.

[56]  David C. Martin,et al.  Effect of Immobilized Nerve Growth Factor on Conductive Polymers: Electrical Properties and Cellular Response , 2007 .

[57]  Ran Liu,et al.  Controlled electrochemical synthesis of conductive polymer nanotube structures. , 2007, Journal of the American Chemical Society.

[58]  B. D. Malhotra,et al.  Polyaniline Langmuir-Blodgett film based cholesterol biosensor. , 2007, Langmuir : the ACS journal of surfaces and colloids.

[59]  Rong Zhang,et al.  Synthesis of Polyaniline Nanotubes with a Reactive Template of Manganese Oxide , 2007 .

[60]  Liqin Dong,et al.  Synthesis, manipulation and conductivity of supramolecular polymer nanowires. , 2007, Chemistry.

[61]  J. Romero‐García,et al.  pH- and thermosensitive polyaniline colloidal particles prepared by enzymatic polymerization. , 2007, Langmuir : the ACS journal of surfaces and colloids.

[62]  M. Verbrugge,et al.  Stress Distribution within Spherical Particles Undergoing Electrochemical Insertion and Extraction , 2008 .

[63]  Candace K. Chan,et al.  High-performance lithium battery anodes using silicon nanowires. , 2008, Nature nanotechnology.

[64]  David C. Martin,et al.  Experimental and theoretical characterization of implantable neural microelectrodes modified with conducting polymer nanotubes. , 2008, Biomaterials.

[65]  Jaephil Cho,et al.  Three-dimensional porous silicon particles for use in high-performance lithium secondary batteries. , 2008, Angewandte Chemie.

[66]  Adam Heller,et al.  Electrochemical glucose sensors and their applications in diabetes management. , 2008, Chemical reviews.

[67]  Young Chul Kim,et al.  Highly aligned ultrahigh density arrays of conducting polymer nanorods using block copolymer templates. , 2008, Nano letters.

[68]  Joseph Wang Electrochemical glucose biosensors. , 2008, Chemical reviews.

[69]  S E Moulton,et al.  Electrode-Cellular Interface , 2009, Science.

[70]  Mark W. Verbrugge,et al.  Stress and Strain-Energy Distributions within Diffusion-Controlled Insertion-Electrode Particles Subjected to Periodic Potential Excitations , 2009 .

[71]  Justin C. Lytle,et al.  Multifunctional 3D nanoarchitectures for energy storage and conversion. , 2009, Chemical Society reviews.

[72]  E. Wang,et al.  Polyaniline/Pt hybrid nanofibers: high-efficiency nanoelectrocatalysts for electrochemical devices. , 2009, Small.

[73]  Mohammad Reza Abidian,et al.  Multifunctional Nanobiomaterials for Neural Interfaces , 2009 .

[74]  Jixiao Wang,et al.  Theoretical and experimental specific capacitance of polyaniline in sulfuric acid , 2009 .

[75]  Dan Li,et al.  One‐Dimensional Conducting Polymer Nanostructures: Bulk Synthesis and Applications , 2009 .

[76]  A. Guiseppi-Elie,et al.  Characterization of electroconductive blends of poly(HEMA-co-PEGMA-co-HMMA-co-SPMA) and poly(Py-co-PyBA). , 2009, Biomacromolecules.

[77]  Yuliang Cao,et al.  Poly(vinyl alcohol)/poly(acrylic acid) hydrogel coatings for improving electrode-neural tissue interface. , 2009, Biomaterials.

[78]  Yun Lu,et al.  Conducting hydrogels with enhanced mechanical strength , 2009 .

[79]  Ping Wu,et al.  Detection of glucose based on direct electron transfer reaction of glucose oxidase immobilized on highly ordered polyaniline nanotubes. , 2009, Analytical chemistry.

[80]  D. Guyomard,et al.  Silicon Composite Electrode with High Capacity and Long Cycle Life , 2009 .

[81]  R. Kaner,et al.  Polyaniline nanofibers: a unique polymer nanostructure for versatile applications. , 2009, Accounts of chemical research.

[82]  J. Tarascon,et al.  Key parameters governing the reversibility of Si/carbon/CMC electrodes for Li-ion batteries , 2010 .

[83]  L. Poole-Warren,et al.  Conducting polymer-hydrogels for medical electrode applications , 2010, Science and technology of advanced materials.

[84]  Anthony Guiseppi-Elie,et al.  Electroconductive hydrogels: synthesis, characterization and biomedical applications. , 2010, Biomaterials.

[85]  G. Yushin,et al.  High-performance lithium-ion anodes using a hierarchical bottom-up approach. , 2010, Nature materials.

[86]  M. Dadsetan,et al.  Development of electrically conductive oligo(polyethylene glycol) fumarate-polypyrrole hydrogels for nerve regeneration. , 2010, Biomacromolecules.

[87]  Zhixiang Wei,et al.  Conducting polymer nanostructures and their application in biosensors. , 2010, Journal of colloid and interface science.

[88]  Dingcai Wu,et al.  Improving electrochemical performance of polyaniline by introducing carbon aerogel as filler. , 2010, Physical chemistry chemical physics : PCCP.

[89]  Matsuhiko Nishizawa,et al.  Conducting polymer electrodes printed on hydrogel. , 2010, Journal of the American Chemical Society.

[90]  M. Verbrugge,et al.  Modeling diffusion-induced stress in nanowire electrode structures , 2010 .

[91]  Sergiy Minko,et al.  Stimuli‐Responsive Porous Hydrogels at Interfaces for Molecular Filtration, Separation, Controlled Release, and Gating in Capsules and Membranes , 2010, Advanced materials.

[92]  Jihuai Wu,et al.  The preparation of poly(glycidyl acrylate)–polypyrrole gel-electrolyte and its application in dye-sensitized solar cells , 2010 .

[93]  Igor Luzinov,et al.  Toward efficient binders for Li-ion battery Si-based anodes: polyacrylic acid. , 2010, ACS applied materials & interfaces.

[94]  Adam Heller,et al.  Electrochemistry in diabetes management. , 2010, Accounts of chemical research.

[95]  Jae-Hun Kim,et al.  Li-alloy based anode materials for Li secondary batteries. , 2010, Chemical Society reviews.

[96]  Yunlong Zhao,et al.  Hierarchical MnMoO(4)/CoMoO(4) heterostructured nanowires with enhanced supercapacitor performance. , 2011, Nature communications.

[97]  John B. Goodenough,et al.  Rechargeable alkali-ion cathode-flow battery , 2011 .

[98]  Yarong Wang,et al.  A Li-liquid cathode battery based on a hybrid electrolyte. , 2011, ChemSusChem.

[99]  B D Malhotra,et al.  Recent advances in polyaniline based biosensors. , 2011, Biosensors & bioelectronics.

[100]  G. Yushin,et al.  A Major Constituent of Brown Algae for Use in High-Capacity Li-Ion Batteries , 2011, Science.

[101]  Youyi Xia,et al.  Polyaniline nanofiber-reinforced conducting hydrogel with unique pH-sensitivity , 2011 .

[102]  Wei-Jun Zhang A review of the electrochemical performance of alloy anodes for lithium-ion batteries , 2011 .

[103]  Y. Chai,et al.  In situ chemo-synthesized multi-wall carbon nanotube-conductive polyaniline nanocomposites: characterization and application for a glucose amperometric biosensor. , 2011, Talanta.

[104]  Q. Gao,et al.  An amperometric glucose biosensor based on layer-by-layer GOx-SWCNT conjugate/redox polymer multilayer on a screen-printed carbon electrode , 2011 .

[105]  Longwei Yin,et al.  Platinum nanoparticle modified polyaniline-functionalized boron nitride nanotubes for amperometric glucose enzyme biosensor. , 2011, ACS applied materials & interfaces.

[106]  John B Goodenough,et al.  Aqueous cathode for next-generation alkali-ion batteries. , 2011, Journal of the American Chemical Society.

[107]  Gengchao Wang,et al.  Growth of polyaniline nanowhiskers on mesoporous carbon for supercapacitor application , 2011 .

[108]  Xiangyun Song,et al.  Polymers with Tailored Electronic Structure for High Capacity Lithium Battery Electrodes , 2011, Advanced materials.

[109]  Hui Wu,et al.  Designing nanostructured Si anodes for high energy lithium ion batteries , 2012 .

[110]  Paul V Braun,et al.  Three-dimensional metal scaffold supported bicontinuous silicon battery anodes. , 2012, Nano letters.

[111]  Cheng-Chih Hsu,et al.  Rapid self-healing hydrogels , 2012, Proceedings of the National Academy of Sciences.

[112]  Jörg J Schneider,et al.  Assembly of one dimensional inorganic nanostructures into functional 2D and 3D architectures. Synthesis, arrangement and functionality. , 2012, Chemical Society reviews.

[113]  Haoshen Zhou,et al.  Hierarchical micro/nano porous silicon Li-ion battery anodes. , 2012, Chemical communications.

[114]  Hui Wu,et al.  Engineering empty space between Si nanoparticles for lithium-ion battery anodes. , 2012, Nano letters.

[115]  Zhenan Bao,et al.  Hierarchical nanostructured conducting polymer hydrogel with high electrochemical activity , 2012, Proceedings of the National Academy of Sciences.

[116]  Ping He,et al.  Li‐Redox Flow Batteries Based on Hybrid Electrolytes: At the Cross Road between Li‐ion and Redox Flow Batteries , 2012 .

[117]  S. Moulton,et al.  Organic Bionics: A New Dimension in Neural Communications , 2012 .

[118]  Xufeng Zhou,et al.  A 3D porous architecture of Si/graphene nanocomposite as high-performance anode materials for Li-ion batteries , 2012 .

[119]  Elise M. Stewart,et al.  A Single Component Conducting Polymer Hydrogel as a Scaffold for Tissue Engineering , 2012 .

[120]  Qing Zhang,et al.  Three-dimensional network current collectors supported Si nanowires for lithium-ion battery applications , 2013 .

[121]  Rong Zhang,et al.  Highly sensitive glucose sensor based on pt nanoparticle/polyaniline hydrogel heterostructures. , 2013, ACS nano.

[122]  Hye Ryung Byon,et al.  High-performance rechargeable lithium-iodine batteries using triiodide/iodide redox couples in an aqueous cathode , 2013, Nature Communications.

[123]  Haowan Wu,et al.  Synthesis of SiGe-based three-dimensional nanoporous electrodes for high performance lithium-ion batteries , 2013 .