Electrochemical properties of leucoemeraldine, emeraldine, and pernigraniline forms of polyaniline/m

Abstract We report on the synthesis and electrochemical properties of leucoemeraldine base, emeraldine salt and pernigraniline base forms of polyaniline (PANI) in the form of nanocomposites with MWNTs. The oxidation state of PANI in the composite is controlled by doping and dedoping of the emeraldine salt form of PANI/MWNT composite, which is prepared through chemical polymerization, using oxidizing and reducing agents without changing the morphology of PANI in the composite and is confirmed by ultraviolet–visible spectroscopy (UV–vis) spectroscopy and Fourier transform infrared (FT-IR) spectroscopy. The electrochemical and pseudocapacitive properties of the composites are investigated using cyclic voltammetry and analyzed with respect to the oxidation state of polyaniline. The PANI/MWNT nanocomposites show specific capacitance values of 217 F g−1, 328 F g−1 and 139 F g−1 for leucoemeraldine base, emeraldine salt and pernigraniline base, respectively. Electrochemical impedance spectroscopy is performed to explain the different electrochemical properties of PANI in different oxidation states.

[1]  Wu-Song Huang,et al.  Polyaniline, a novel conducting polymer. Morphology and chemistry of its oxidation and reduction in aqueous electrolytes , 1986 .

[2]  G. Chen,et al.  Nanocomposites of manganese oxides and carbon nanotubes for aqueous supercapacitor stacks , 2010 .

[3]  Wolfgang Hoenlein,et al.  Growth of isolated carbon nanotubes with lithographically defined diameter and location , 2003 .

[4]  Tzong‐Ming Wu,et al.  Characterization and electrical properties of polypyrrole/multiwalled carbon nanotube composites synthesized by in situ chemical oxidative polymerization , 2006 .

[5]  N. Gospodinova,et al.  On the mechanism of oxidative polymerization of aniline , 1993 .

[6]  E. Geniés,et al.  Redox mechanism and electrochemical behaviour or polyaniline deposits , 1985 .

[7]  Bin Wang,et al.  In-situ electrochemical polymerization of multi-walled carbon nanotube/polyaniline composite films for electrochemical supercapacitors , 2009 .

[8]  Chandrakant D. Lokhande,et al.  Studies on electrosynthesized leucoemeraldine, emeraldine and pernigraniline forms of polyaniline films and their supercapacitive behavior , 2010 .

[9]  Jae-Hong Kim,et al.  Fabrication and electrochemical properties of carbon nanotube film electrodes , 2006 .

[10]  Jixiao Wang,et al.  Theoretical and experimental specific capacitance of polyaniline in sulfuric acid , 2009 .

[11]  K. Lian,et al.  Electrochemical characterizations of carbon nanomaterials by the cavity microelectrode technique , 2008 .

[12]  A. MacDiarmid,et al.  A simple method to estimate the oxidation state of polyanilines , 2000 .

[13]  Meifang Zhu,et al.  Facile Fabrication of Uniform Core−Shell Structured Carbon Nanotube−Polyaniline Nanocomposites , 2009 .

[14]  C. Cha,et al.  Electrochemistry of powder material studied by means of the cavity microelectrode (CME) , 2001 .

[15]  Pierre-Louis Taberna,et al.  Microelectrode Study of Pore Size, Ion Size, and Solvent Effects on the Charge/Discharge Behavior of Microporous Carbons for Electrical Double-Layer Capacitors , 2009 .

[16]  Richard W. Siegel,et al.  Selective Attachment of Gold Nanoparticles to Nitrogen-Doped Carbon Nanotubes , 2003 .

[17]  G. Wallace,et al.  Polyaniline fibres containing single walled carbon nanotubes: Enhanced performance artificial muscles , 2006 .

[18]  D. Bélanger,et al.  Characterization and transport properties of Nafion/polyaniline composite membranes. , 2005, The journal of physical chemistry. B.

[19]  A. Roberts,et al.  Effect of specific surface area on capacitance in asymmetric carbon/α-MnO2 supercapacitors , 2010 .

[20]  H. Yoneyama,et al.  Oxidative degradation pathway of polyaniline film electrodes , 1984 .

[21]  O Ok Park,et al.  Carbon nanotube/RuO2 nanocomposite electrodes for supercapacitors , 2003 .

[22]  K. Rajendra Prasad,et al.  Fabrication and evaluation of 450 F electrochemical redox supercapacitors using inexpensive and high-performance, polyaniline coated, stainless-steel electrodes , 2002 .

[23]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[24]  H. Park,et al.  Influence of oxidation state of polyaniline on physicochemical and transport properties of Nafion/polyaniline composite membrane for DMFC , 2008 .

[25]  M. Karim,et al.  SWNTs coated by conducting polyaniline: Synthesis and modified properties , 2005 .

[26]  Koon Gee Neoh,et al.  POLYANILINE: A POLYMER WITH MANY INTERESTING INTRINSIC REDOX STATES , 1998 .

[27]  J. Lindgren,et al.  FTIR study of water in cast Nafion films , 2000 .

[28]  Meifang Zhu,et al.  Polyaniline/multi-walled carbon nanotube composites with core–shell structures as supercapacitor electrode materials , 2010 .

[29]  S. Paddeu,et al.  Optical, structural and fluorescence microscopic studies on reduced form of polyaniline: The leucoemeraldine base , 1997 .

[30]  Yingke Zhou,et al.  Preparation and Electrochemistry of SWNT/PANI Composite Films for Electrochemical Capacitors , 2004 .

[31]  Xiaohong Li,et al.  Electrochemical capacitance of well-coated single-walled carbon nanotube with polyaniline composites , 2004 .

[32]  Rong Zhang,et al.  Hydrothermal Synthesis of Polyaniline Mesostructures , 2006 .

[33]  E. Frąckowiak Carbon materials for supercapacitor application. , 2007, Physical chemistry chemical physics : PCCP.

[34]  Norio Miura,et al.  Polyaniline/single-wall carbon nanotube (PANI/SWCNT) composites for high performance supercapacitors , 2006 .

[35]  A. Pron,et al.  IN SITU RAMAN SPECTROSCOPIC STUDIES OF THE ELECTROCHEMICAL BEHAVIOR OF POLYANILINE , 1995 .

[36]  J. Yano,et al.  “Polyaniline”: Formation reaction and structure , 1987 .