High-throughput research on superconductivity

As an essential component of the Materials Genome Initiative aiming to shorten the period of materials research and development, combinatorial synthesis and rapid characterization technologies have been playing a more and more important role in exploring new materials and comprehensively understanding materials properties. In this review, we discuss the advantages of high-throughput experimental techniques in researches on superconductors. The evolution of combinatorial thin-film technology and several high-speed screening devices are briefly introduced. We emphasize the necessity to develop new high-throughput research modes such as a combination of high-throughput techniques and conventional methods.

[1]  Marco Buongiorno Nardelli,et al.  The high-throughput highway to computational materials design. , 2013, Nature materials.

[2]  Jie Yuan,et al.  Transport anomalies and quantum criticality in electron-doped cuprate superconductors , 2016, 1602.08797.

[3]  A. Bollinger,et al.  Anomalous independence of interface superconductivity from carrier density. , 2013, Nature materials.

[4]  V. Ksenofontov,et al.  Extreme sensitivity of superconductivity to stoichiometry in Fe1+δSe , 2008, 0811.1613.

[5]  Kim,et al.  Unconventional pairing in the iron arsenide superconductors , 2009, 0911.5183.

[6]  Atsutaka Maeda,et al.  Low-temperature-compatible tunneling-current-assisted scanning microwave microscope utilizing a rigid coaxial resonator. , 2016, The Review of scientific instruments.

[7]  G. F. Sun,et al.  Tc enhancement of HgBa2Ca2Cu3O8+δ by Tl substitution , 1994 .

[8]  Chu,et al.  Superconductivity at 93 K in a new mixed-phase Yb-Ba-Cu-O compound system at ambient pressure. , 1987, Physical review letters.

[9]  Wenhan Liu,et al.  High-throughput x-ray characterization system for combinatorial materials studies , 2005 .

[10]  Mary Anne White,et al.  High-throughput resistivity apparatus for thin-film combinatorial libraries , 2005 .

[11]  U. Hartmann Magnetic force microscopy , 1990 .

[12]  Yi Zhang,et al.  Combinatorial search of superconductivity in Fe-B composition spreads , 2013, 1306.3024.

[13]  Ichiro Takeuchi,et al.  Monolithic multichannel ultraviolet detector arrays and continuous phase evolution in MgxZn1−xO composition spreads , 2003 .

[14]  William J. Gallagher,et al.  High‐resolution scanning SQUID microscope , 1995 .

[15]  W. Wang,et al.  Machine Learning Approach for Prediction and Understanding of Glass-Forming Ability. , 2017, The journal of physical chemistry letters.

[16]  Bao Jun,et al.  Recent Progresses in the Combinatorial Materials Science , 2006 .

[17]  Makoto Otani,et al.  A high-throughput thermoelectric power-factor screening tool for rapid construction of thermoelectric property diagrams , 2007 .

[18]  Vladimir Kresin,et al.  Colloquium: High pressure and road to room temperature superconductivity , 2018 .

[19]  Ichiro Takeuchi,et al.  Applications of high throughput (combinatorial) methodologies to electronic, magnetic, optical, and energy-related materials , 2013 .

[20]  R. Greene,et al.  Link between spin fluctuations and electron pairing in copper oxide superconductors , 2011, Nature.

[21]  Masashi Kawasaki,et al.  Rapid construction of a phase diagram of doped Mott insulators with a composition-spread approach , 2000 .

[22]  Jie Yuan,et al.  Manipulating composition gradient in cuprate superconducting thin films , 2017, 1706.06891.

[23]  Yuji Matsumoto,et al.  Combinatorial solid state materials science and technology , 2000 .

[24]  Jie Yuan,et al.  Applications and perspective of near-field microwave microscope in high-throughput characterizations of superconducting materials , 2017 .

[25]  张旭,et al.  Bi1-xLaxFeO3±δ薄膜的快速制备及铁电性 , 2016 .

[26]  Hideomi Koinuma,et al.  A combinatorial approach in oxide/semiconductor interface research for future electronic devices , 2002 .

[27]  Ichiro Takeuchi,et al.  Atomic resolution imaging at 2.5 GHz using near-field microwave microscopy , 2010, 1007.0750.

[28]  H Luetkens,et al.  The phase diagram of electron-doped La2−xCexCuO4−δ , 2014, Nature Communications.

[29]  K. Hashimoto,et al.  Microwave penetration depth and quasiparticle conductivity of PrFeAsO1-y single crystals: evidence for a full-gap superconductor. , 2008, Physical review letters.

[30]  Ruijuan Xiao,et al.  Oxysulfide LiAlSO: A Lithium Superionic Conductor from First Principles. , 2017, Physical review letters.

[31]  J. Pablo,et al.  The Materials Genome Initiative, the interplay of experiment, theory and computation , 2014 .

[32]  Ashley A. White The Materials Genome Initiative: One year on , 2012 .

[33]  Samuel S. Mao,et al.  High throughput growth and characterization of thin film materials , 2013 .

[34]  Ichiro Takeuchi,et al.  Quantitative scanning evanescent microwave microscopy and its applications in characterization of functional materials libraries , 2005 .

[35]  Kevin Cecil Hewitt,et al.  Densely mapping the phase diagram of cuprate superconductors using a spatial composition spread approach , 2010 .

[36]  H. Koinuma,et al.  Combinatorial solid-state chemistry of inorganic materials , 2004, Nature materials.

[37]  Uchida,et al.  Optical spectra of Pr2-xCexCuO4- delta crystals: Evolution of in-gap states with electron doping. , 1993, Physical review. B, Condensed matter.

[38]  V. F. Zackay,et al.  Rapid Method for Determining Ternary‐Alloy Phase Diagrams , 1965 .

[39]  Akihito Sawa,et al.  Electron-doped superconductor La2-xCexCuO4: Preparation of thin films and modified doping range for superconductivity , 2002 .

[40]  Hideo Hosono,et al.  Iron-based layered superconductor La[O(1-x)F(x)]FeAs (x = 0.05-0.12) with T(c) = 26 K. , 2008, Journal of the American Chemical Society.

[41]  H. Koinuma,et al.  Improved stoichiometry and misfit control in perovskite thin film formation at a critical fluence by pulsed laser deposition , 2005 .

[42]  赵忠贤 Ba-Y-Cu氧化物液氮温区的超导电性 , 1987 .

[43]  Ludwig Brehmer,et al.  Scanning near-field ellipsometric microscope-imaging ellipsometry with a lateral resolution in nanometer range , 2001 .

[44]  X. Xiang,et al.  Quantitative microwave near-field microscopy of dielectric properties , 1998 .

[45]  Jun Li,et al.  Tunable critical temperature for superconductivity in FeSe thin films by pulsed laser deposition , 2018, Scientific Reports.

[46]  M. Norman,et al.  Materials design for new superconductors , 2016, Reports on progress in physics. Physical Society.

[47]  Jie Yuan,et al.  Research trends in electron-doped cuprate superconductors , 2015 .

[48]  Masayuki Karasuyama,et al.  Fast and scalable prediction of local energy at grain boundaries: machine-learning based modeling of first-principles calculations , 2017 .

[49]  Hiroshi Maeda,et al.  A New High-T c Oxide Superconductor without a Rare Earth Element , 1988 .

[50]  S. P. Pai,et al.  Low temperature scanning-tip microwave near-field microscopy of YBa2Cu3O7−x films , 1997 .

[51]  K. Müller,et al.  Possible highTc superconductivity in the Ba−La−Cu−O system , 1986 .

[52]  Eric A. Stach,et al.  Microstructural properties of (Ba, Sr)TiO3 films fabricated from BaF2/SrF2/TiO2 amorphous multilayers using the combinatorial precursor method , 2001 .

[53]  R. Greene,et al.  Progress and perspectives on electron-doped cuprates , 2009, 0906.2931.

[54]  Yi-Lin Huang,et al.  Superconductivity in the PbO-type structure α-FeSe , 2008, Proceedings of the National Academy of Sciences.

[55]  I. Božović,et al.  Perspective: Extremely fine tuning of doping enabled by combinatorial molecular-beam epitaxy , 2015 .

[56]  Krishna Rajan,et al.  Combinatorial and high-throughput screening of materials libraries: review of state of the art. , 2011, ACS combinatorial science.

[57]  D. Scalapino A common thread: The pairing interaction for unconventional superconductors , 2012, 1207.4093.

[58]  A N Kolmogorov,et al.  New superconducting and semiconducting Fe-B compounds predicted with an ab initio evolutionary search. , 2010, Physical review letters.

[59]  R. L. Greene,et al.  Transport properties of Nd 1.85 Ce 0.15 CuO 4+δ crystals before and after reduction , 1993 .

[60]  J. Hanak The “multiple-sample concept” in materials research: Synthesis, compositional analysis and testing of entire multicomponent systems , 1970 .

[61]  Peter G. Schultz,et al.  A Combinatorial Approach to Materials Discovery , 1995, Science.

[62]  David Rench McCauley,et al.  Combinatorial measurements of Hall effect and resistivity in oxide films. , 2008, The Review of scientific instruments.