Physical and optical properties of Cu nanoclusters fabricated by ion implantation in fused silica

Cu clusters of nanometer dimensions were created by implantation of Cu ions into pure fused silica substrates at energies of 160 keV. The sizes and size distributions of the Cu clusters were measured by transmission electron microscopy, and were found to be determined by the ion‐beam current during implantation. Optical‐absorption spectra of these materials show the size‐dependent surface plasmon resonance characteristic of noble‐metal clusters. There are also significant size‐dependent effects in both the nonlinear index of refraction and two‐photon absorption coefficients. The distinctive variations in linear and nonlinear optical properties with Cu nanocluster sizes and size distributions affords potentially interesting possibilities for using these materials in nonlinear optical devices.

[1]  G. Mie Beiträge zur Optik trüber Medien, speziell kolloidaler Metallösungen , 1908 .

[2]  P. D. Townsend,et al.  Optical effects of ion implantation , 1987 .

[3]  G. Eesley,et al.  Generation of nonequilibrium electron and lattice temperatures in copper by picosecond laser pulses. , 1986, Physical review. B, Condensed matter.

[4]  Taylor,et al.  Ultraviolet photoelectron spectra of mass-selected copper clusters: Evolution of the 3d band. , 1990, Physical review letters.

[5]  Z. Kam,et al.  Absorption and Scattering of Light by Small Particles , 1998 .

[6]  C. Bowden,et al.  Nonlinear-optical properties of conductive spheroidal particle composites , 1989 .

[7]  R. Doremus,et al.  Optical absorption of small copper particles and the optical properties of copper. , 1992, Applied Optics.

[8]  U. Kreibig,et al.  OPTICAL ABSORPTION OF SMALL METALLIC PARTICLES , 1985 .

[9]  Robert H. Magruder,et al.  Structure property relationships of nanometer-size metal clusters in glasses , 1993, Optics & Photonics.

[10]  Paolo Mazzoldi,et al.  Ion beam modification of insulators , 1987 .

[11]  R. Zuhr,et al.  Picosecond nonlinear optical response of a Cu:silica nanocluster composite. , 1993, Optics letters.

[12]  J. Garnett,et al.  Colours in Metal Glasses and in Metallic Films. , 1904, Proceedings of the Royal Society of London.

[13]  Stroud,et al.  Nonlinear susceptibilities of granular matter. , 1988, Physical review. B, Condensed matter.

[14]  E. W. Stryland,et al.  Sensitive Measurement of Optical Nonlinearities Using a Single Beam Special 30th Anniversary Feature , 1990 .

[15]  R. Weller,et al.  Nonlinear index of refraction of Cu- and Pb-implanted fused silica , 1992 .

[16]  M. J. Weber,et al.  Nonlinear Refractive Index of Glasses and Crystals , 1978 .

[17]  R. Zuhr,et al.  Laser-induced fluorescence and nonlinear optical properties of ion-implanted fused silica , 1991 .

[18]  W. Halperin,et al.  Quantum size effects in metal particles , 1986 .

[19]  G. W. Arnold,et al.  Aggregation and migration of ion‐implanted silver in lithia‐alumina‐silica glass , 1977 .

[20]  Paul R. Ashley,et al.  Degenerate four-wave mixing in colloidal gold as a function of particle size , 1990 .

[21]  Robert R. Alfano,et al.  Optical properties of gold nanocluster composites formed by deep ion implantation in silica , 1993 .

[22]  R. Zuhr,et al.  Optical absorption of Cu implanted silica , 1991 .

[23]  R. Zuhr,et al.  Interaction between implanted ions and intrinsic defects in silica , 1989 .

[24]  François Hache,et al.  The optical kerr effect in small metal particles and metal colloids: The case of gold , 1988 .

[25]  François Hache,et al.  Optical nonlinearities of small metal particles: surface-mediated resonance and quantum size effects , 1986 .

[26]  Kolář,et al.  Transition to plasmonlike absorption in small Hg clusters. , 1992, Physical review letters.