Fractal analysis and control in the predator–prey model

ABSTRACT The two-dimensional predator–prey Lotka–Volterra model is discussed from the point of fractal theory. Julia set of the discrete version of the model is introduced. Then, the linear feedback control is taken to control the Julia set. By controlling the Julia set, the attractive domain of the attractive fixed point is controlled indirectly. To associate two different Julia sets of the model with different parameters, nonlinear coupling items are designed to make one Julia set change to be another. The simulations illustrate the efficacy of these methods.

[1]  Xing-Yuan Wang,et al.  THE QUASI-SINE FIBONACCI HYPERBOLIC DYNAMIC SYSTEM , 2010 .

[2]  Xingyuan Wang,et al.  Hyperdimensional generalized M–J sets in hypercomplex number space , 2013 .

[3]  A. J. Lotka,et al.  Elements of Physical Biology. , 1925, Nature.

[4]  Pei Wang,et al.  The gradient control of spatial-alternated Julia sets , 2015 .

[5]  Yongping Zhang,et al.  Control and Synchronization of Julia Sets of the Complex perturbed Rational Maps , 2013, Int. J. Bifurc. Chaos.

[6]  Josef Hofbauer,et al.  Evolutionary Games and Population Dynamics , 1998 .

[7]  Yasuhisa Saito Permanence and global stability for general Lotka–Volterra predator–prey systems with distributed delays , 2001 .

[8]  Salvatore Rionero,et al.  On the stability of non-autonomous perturbed Lotka-Volterra models , 2013, Appl. Math. Comput..

[9]  Ping Liu,et al.  Control and coupling synchronization of Julia sets in coupled map lattice , 2012 .

[10]  Shou Gang Sui,et al.  Control of Julia sets , 2005 .

[11]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[12]  Jifa Jiang,et al.  The permanence and global attractivity in a nonautonomous Lotka–Volterra system , 2004 .

[13]  Josef Hofbauer,et al.  Evolutionary Games and Population Dynamics: Other game dynamics , 1998 .

[14]  张永平,et al.  Gradient control and synchronization of Julia sets , 2008 .

[15]  Yang Liu,et al.  Synchronization criteria for Two Boolean Networks Based on Logical Control , 2013, Int. J. Bifurc. Chaos.

[16]  Y. Takeuchi Global Dynamical Properties of Lotka-Volterra Systems , 1996 .

[17]  Xinyuan Liao,et al.  Permanence for a discrete time Lotka-Volterra type food-chain model with delays , 2007, Appl. Math. Comput..

[18]  Weihua Sun,et al.  Control and Synchronization of Julia Sets in the Forced Brusselator Model , 2015, Int. J. Bifurc. Chaos.

[19]  A. J. Lotka Elements of Physical Biology. , 1925, Nature.

[20]  S. Krantz Fractal geometry , 1989 .

[21]  Xingyuan Wang,et al.  The generalized M–J sets for bicomplex numbers , 2013 .

[22]  Xingyuan Wang,et al.  Additive perturbed generalized Mandelbrot-Julia sets , 2007, Appl. Math. Comput..

[23]  Zhengyi Lu,et al.  Permanence for two-species lotka-volterra systems with delays. , 2006, Mathematical biosciences and engineering : MBE.

[24]  Kenneth Falconer,et al.  Fractal Geometry: Mathematical Foundations and Applications , 1990 .

[25]  Rui Xu,et al.  Persistence and Global Stability for a Delayed Nonautonomous Predator–Prey System without Dominating Instantaneous Negative Feedback , 2001 .

[26]  Ling Hong,et al.  Chaos and Adaptive Synchronizations in fractional-Order Systems , 2013, Int. J. Bifurc. Chaos.

[27]  Liu Yan β Persistence and β Extinction of a Predator-prey Lotka-Volterra Model of Two Species , 2010 .