Multigoal-oriented error estimation and mesh adaptivity for fluid-structure interaction

In this work, we consider multigoal-oriented error estimation for stationary fluid-structure interaction. The problem is formulated within a variational-monolithic setting using arbitrary Lagrangian-Eulerian coordinates. Employing the dual-weighted residual method for goal-oriented a posteriori error estimation, adjoint sensitivities are required. For multigoal-oriented error estimation, a combined functional is formulated such that several quantities of interest are controlled simultaneously. As localization technique for mesh refinement we employ a partition-of-unity. Our algorithmic developments are substantiated with several numerical tests such as an elastic lid-driven cavity with two goal functionals, an elastic bar in a chamber with two goal functionals, and the FSI-1 benchmark with three goal functionals.

[1]  U. Langer,et al.  Multigoal-oriented error estimates for non-linear problems , 2018, J. Num. Math..

[2]  Ricardo H. Nochetto,et al.  Small data oscillation implies the saturation assumption , 2002, Numerische Mathematik.

[3]  Ulrich Langer,et al.  Multigoal-oriented optimal control problems with nonlinear PDE constraints , 2019, Comput. Math. Appl..

[4]  T. Bodnár,et al.  Fluid-structure interaction and biomedical applications , 2014 .

[5]  Alfio Quarteroni,et al.  Cardiovascular mathematics : modeling and simulation of the circulatory system , 2009 .

[6]  Endre Süli,et al.  Adaptive finite element methods for differential equations , 2003, Lectures in mathematics.

[7]  A. Agouzal On the Saturation Assumption and Hierarchical a Posteriori Error Estimator , 2002 .

[8]  Philippe G. Ciarlet,et al.  The finite element method for elliptic problems , 2002, Classics in applied mathematics.

[9]  David Wells,et al.  The deal.II library, Version 9.1 , 2019, J. Num. Math..

[10]  T. Tezduyar,et al.  Mesh Moving Techniques for Fluid-Structure Interactions With Large Displacements , 2003 .

[11]  E. Harald van Brummelen,et al.  On the adjoint-consistent formulation of interface conditions in goal-oriented error estimation and adaptivity for fluid-structure interaction , 2010 .

[12]  Rolf Rannacher,et al.  ARTIFICIAL BOUNDARIES AND FLUX AND PRESSURE CONDITIONS FOR THE INCOMPRESSIBLE NAVIER–STOKES EQUATIONS , 1996 .

[13]  Rolf Rannacher,et al.  NUMERICAL SIMULATION OF FLUID-STRUCTURE INTERACTION BASED ON MONOLITHIC VARIATIONAL FORMULATIONS , 2010 .

[14]  Rolf Rannacher,et al.  An optimal control approach to a posteriori error estimation in finite element methods , 2001, Acta Numerica.

[15]  Luca Heltai,et al.  The deal.II finite element library: Design, features, and insights , 2021, Comput. Math. Appl..

[16]  A. E. Holdo̸,et al.  Fluid Structure Interaction Modelling , 2004 .

[17]  S. Prudhomme,et al.  A new goal-oriented formulation of the finite element method , 2017 .

[18]  Thomas Wick,et al.  Solving Monolithic Fluid-Structure Interaction Problems in Arbitrary Lagrangian Eulerian Coordinates with the deal.II Library , 2011 .

[19]  Wing Kam Liu,et al.  Lagrangian-Eulerian finite element formulation for incompressible viscous flows☆ , 1981 .

[20]  Fabio Nobile,et al.  A Stability Analysis for the Arbitrary Lagrangian Eulerian Formulation with Finite Elements , 1999 .

[21]  E. H. van Brummelen,et al.  Worst-case multi-objective error estimation and adaptivity , 2016, 1604.04541.

[22]  S. Giuliani,et al.  Lagrangian and Eulerian Finite Element Techniques for Transient Fluid-Structure Interaction Problems , 1977 .

[23]  I. Akkerman,et al.  Goal-oriented error estimation and adaptivity for fluid–structure interaction using exact linearized adjoints , 2011 .

[24]  David Pardo,et al.  Multigoal-oriented adaptivity for hp-finite element methods , 2010, ICCS.

[25]  I. Babuska,et al.  A‐posteriori error estimates for the finite element method , 1978 .

[26]  T. Wick,et al.  Finite elements for fluid–structure interaction in ALE and fully Eulerian coordinates , 2010 .

[27]  Bernd Simeon,et al.  Mesh moving techniques in fluid-structure interaction: robustness, accumulated distortion and computational efficiency , 2020, Computational Mechanics.

[28]  Thomas Grätsch,et al.  Goal-oriented error estimation in the analysis of fluid flows with structural interactions , 2006 .

[29]  Hans-Joachim Bungartz,et al.  Fluid Structure Interaction II: Modelling, Simulation, Optimization , 2010 .

[30]  Ralf Hartmann,et al.  Goal-Oriented A Posteriori Error Estimation for Multiple Target Functionals , 2003 .

[31]  Ulrich Langer,et al.  Reliability and Efficiency of DWR-Type A Posteriori Error Estimates with Smart Sensitivity Weight Recovering , 2020, Comput. Methods Appl. Math..

[32]  Thomas Richter,et al.  Variational localizations of the dual weighted residual estimator , 2015, J. Comput. Appl. Math..

[33]  Gary R. Consolazio,et al.  Finite Elements , 2007, Handbook of Dynamic System Modeling.

[34]  L. Formaggia,et al.  Stability analysis of second-order time accurate schemes for ALE-FEM , 2004 .

[35]  Thomas Wick,et al.  Adaptive time-step control for nonlinear fluid-structure interaction , 2018, J. Comput. Phys..

[36]  Ralf Hartmann,et al.  Multitarget Error Estimation and Adaptivity in Aerodynamic Flow Simulations , 2008, SIAM J. Sci. Comput..

[37]  Thomas Dunne,et al.  Adaptive Finite Element Approximation of Fluid-Structure Interaction Based on Eulerian and Arbitrary Lagrangian-Eulerian Variational Formulations , 2007 .

[38]  Marie Schmidt,et al.  Fundamental Trends In Fluid Structure Interaction , 2016 .

[39]  Thomas Dunne,et al.  An Eulerian approach to fluid–structure interaction and goal‐oriented mesh adaptation , 2006 .

[40]  Thomas Wick,et al.  Two-Side a Posteriori Error Estimates for the Dual-Weighted Residual Method , 2020, SIAM J. Sci. Comput..

[41]  Thomas Wick,et al.  A Partition-of-Unity Dual-Weighted Residual Approach for Multi-Objective Goal Functional Error Estimation Applied to Elliptic Problems , 2017, Comput. Methods Appl. Math..

[42]  Thomas Richter,et al.  Goal-oriented error estimation for fluid–structure interaction problems , 2012 .

[43]  T. Wick Fluid-structure interactions using different mesh motion techniques , 2011 .

[44]  Yuri Bazilevs,et al.  Computational Fluid-Structure Interaction: Methods and Applications , 2013 .

[45]  S. Turek,et al.  Proposal for Numerical Benchmarking of Fluid-Structure Interaction between an Elastic Object and Laminar Incompressible Flow , 2006 .

[46]  G. M.,et al.  Partial Differential Equations I , 2023, Applied Mathematical Sciences.

[47]  Thomas Wick,et al.  Adjoint-based methods for optimization and goal-oriented error control applied to fluid-structure interaction: implementation of a partition-of-unity dual-weighted residual estimator for stationary forward FSI problems in deal.II , 2021, Proceedings of the YIC 2021 - VI ECCOMAS Young Investigators Conference.

[48]  Rolf Rannacher,et al.  Adaptive finite element analysis of nonlinear problems: balancing of discretization and iteration errors , 2013, J. Num. Math..