Hot working and microstructural response of ultrasonically fabricated 2wt%ZrB2/AA7068 composite

[1]  You-ping Yi,et al.  Hot Deformation Behavior and Microstructural Evolution of the Al-Cu-Li alloy: A Study With Processing Map , 2022, Journal of Alloys and Compounds.

[2]  Gaurav Singh Hot deformation behavior of a novel alpha + beta titanium alloy TIMETAL®407 , 2022, Journal of Alloys and Compounds.

[3]  Xin Li,et al.  Investigation of the hot deformation behavior and microstructure evolution of TiB2+TiAl3/2024Al composite , 2022, Journal of Alloys and Compounds.

[4]  B. Daniel,et al.  Microstructural evolution of Al-7.3Zn-2.2Mg-2Cu (Al7068) alloy in T6 condition during isothermal compression using 3-dimensional processing map , 2022, Journal of Alloys and Compounds.

[5]  Ji-wu Huang,et al.  Dynamic recrystallization and precipitation behavior of a novel Sc, Zr alloyed Al-Zn-Mg-Cu alloy during hot deformation , 2021, Materials Characterization.

[6]  Qudong Wang,et al.  Hot deformation constitutive model and processing maps of homogenized Al–5Mg–3Zn–1Cu alloy , 2021 .

[7]  Yangwei Wang,et al.  Precipitation behaviour in an Al-Zn-Mg-Cu alloy subjected to high strain rate compression tests , 2021 .

[8]  B. Stalin,et al.  Effect of ZrB2 on microstructural, mechanical and corrosion behaviour of aluminium (AA7178) alloy matrix composite prepared by the stir casting route , 2021 .

[9]  Atul Kumar,et al.  Effects of cryo-FSP on metallurgical and mechanical properties of stir cast Al7075–SiC nanocomposites , 2021 .

[10]  Xiaodong Liu,et al.  Hot deformation behavior and 3D processing maps of AA7020 aluminum alloy , 2020 .

[11]  B. BalaKrishna,et al.  Microstructure, mechanical properties and fracture mechanisms of ZrB2 ceramic reinforced A7075 composites fabricated by stir casting , 2020 .

[12]  A. Luo,et al.  Microstructure and hot deformation behavior of a new aluminum–lithium–copper based AA2070 alloy , 2020 .

[13]  T. Śleboda,et al.  The analysis of flow behavior of Ti-6Al-2Sn-4Zr-6Mo alloy based on the processing maps , 2020, International Journal of Material Forming.

[14]  B. Liao,et al.  The microstructural evolution of aluminum alloy 7055 manufactured by hot thermo-mechanical process , 2019, Journal of Alloys and Compounds.

[15]  V. Anil Kumar,et al.  Hot Deformation Behavior of Aluminum Alloys AA7010 and AA7075 , 2019, Journal of Materials Engineering and Performance.

[16]  R. Tao,et al.  High strength and high creep resistant ZrB2/Al nanocomposites fabricated by ultrasonic-chemical in-situ reaction , 2019, Journal of Materials Science & Technology.

[17]  Litong Zhang,et al.  Facile synthesis of three-dimensional porous carbon for high-performance supercapacitors , 2019, Journal of Alloys and Compounds.

[18]  B. Daniel,et al.  Physical Simulation and Processing Map of Aluminum 7068 Alloy , 2019, Materials Performance and Characterization.

[19]  S. Sundaram,et al.  Fabrication, characterization and analysis of improvements in mechanical properties of AA7075/ZrB2 in-situ composites , 2019, Measurement.

[20]  Z. Cui,et al.  High-temperature deformation mechanisms and physical-based constitutive modeling of ultra-supercritical rotor steel , 2019, Journal of Manufacturing Processes.

[21]  J. Han,et al.  The Comparison in the Microstructure and Mechanical Properties between AZ91 Alloy and Nano-SiCp/AZ91 Composite Processed by Multi-Pass Forging Under Varying Passes and Temperatures , 2019, Materials.

[22]  J. Ruzic,et al.  Microstructural and basic mechanical characteristics of ZA27 alloy-based nanocomposites synthesized by mechanical milling and compocasting , 2018, Journal of Composite Materials.

[23]  R. Tao,et al.  Hot deformation behavior and processing map of in-situ nano ZrB2 reinforced AA6111 matrix composites , 2018, Materials Research Express.

[24]  Rahul K Gupta,et al.  Strengthening mechanisms in ultrasonically processed aluminium matrix composite with in-situ Al3Ti by salt addition , 2018 .

[25]  S. Murty,et al.  Development of Processing Map and Constitutive Relationship for Thermomechanical Processing of Aluminum Alloy AA2014 , 2018 .

[26]  Qing Liu,et al.  Hot deformation behavior and microstructure of AA2195 alloy under plane strain compression , 2017 .

[27]  Xuechao Sun,et al.  Characterization of hot deformation behavior of Al-Zn-Mg-Mn-Zr alloy during compression at elevated temperature , 2017 .

[28]  Zhenya Zhang,et al.  Microstructural evolution and mechanical properties of ZrB2/6061Al nanocomposites processed by multi-pass friction stir processing , 2017 .

[29]  W. J. Kim,et al.  Difference in the Hot Compressive Behavior and Processing Maps between the As-cast and Homogenized Al-Zn-Mg-Cu (7075) Alloys , 2016 .

[30]  L. Cornish,et al.  Predicting yield strengths of Al-Zn-Mg-Cu-(Zr) aluminium alloys based on alloy composition or hardness , 2016 .

[31]  Gang Chen,et al.  Effects of ultrasonic vibration on the microstructure and tensile properties of the nano ZrB2/2024Al composites synthesized by direct melt reaction , 2016 .

[32]  Qing Liu,et al.  Effects of strain rate on flow stress behavior and dynamic recrystallization mechanism of Al-Zn-Mg-Cu aluminum alloy during hot deformation , 2016 .

[33]  Zhenya Zhang,et al.  Microstructure-property analysis of ZrB2/6061Al hierarchical nanocomposites fabricated by direct melt reaction , 2016 .

[34]  B. Kashyap,et al.  Ductilizing of a brittle as-cast hypereutectic Al-Si alloy by friction stir processing , 2015 .

[35]  G. Gautam,et al.  Effect of ZrB2 particles on the microstructure and mechanical properties of hybrid (ZrB2 + Al3Zr)/AA5052 insitu composites , 2015 .

[36]  Yu-tao Zhao,et al.  Hot deformation behavior of in situ nano ZrB2 reinforced 2024Al matrix composite , 2015 .

[37]  Narendra Kumar,et al.  In-situ development of ZrB2 particles and their effect on microstructure and mechanical properties of AA5052 metal-matrix composites , 2015 .

[38]  He Yang,et al.  Processing map of as-cast 7075 aluminum alloy for hot working , 2015 .

[39]  Y. Zare New models for yield strength of polymer/clay nanocomposites , 2015 .

[40]  K. R. Ravi,et al.  Ultrasonic assisted grain refinement of Al–Mg alloy using in-situ MgAl2O4 particles , 2015 .

[41]  Yun-lai Deng,et al.  Constitutive equation and hot deformation behavior of homogenized Al–7.68Zn–2.12Mg–1.98Cu–0.12Zr alloy during compression at elevated temperature , 2014 .

[42]  R. Roy,et al.  Recrystallization Behavior of Commercial Purity Aluminium Alloys , 2014 .

[43]  Zhenya Zhang,et al.  Effects of in situ generated ZrB2 nano-particles on microstructure and tensile properties of 2024Al matrix composites , 2014 .

[44]  He Yang,et al.  Softening mechanism and microstructure evolution of as-extruded 7075 aluminum alloy during hot deformation , 2014 .

[45]  J. Jonas,et al.  Dynamic and post-dynamic recrystallization under hot, cold and severe plastic deformation conditions , 2014 .

[46]  Yanhui Zhang,et al.  The effects of grain size on the hot deformation and processing map for 7075 aluminum alloy , 2013 .

[47]  Kanghua Chen,et al.  Effect of heat treatment on hot deformation behavior and microstructure evolution of 7085 aluminum alloy , 2012 .

[48]  Y. Bréchet,et al.  The effect of solute on discontinuous dynamic recrystallization , 2012 .

[49]  V. Senthilkumar,et al.  Hot deformation behavior of mechanically alloyed Al6063/0.75Al2O3/0.75Y2O3 nano-composite―A study using constitutive modeling and processing map , 2012 .

[50]  J. Cabrera,et al.  Constitutive relationships for hot deformation of austenite , 2011 .

[51]  I. Dinaharan,et al.  Influence of in situ formed ZrB2 particles on microstructure and mechanical properties of AA6061 metal matrix composites , 2011 .

[52]  S. Ramanathan,et al.  Hot deformation behaviour of 7075 alloy , 2011 .

[53]  Ke Yang,et al.  Constitutive flow behavior and hot workability of powder metallurgy processed 20 vol.%SiCP/2024Al composite , 2010 .

[54]  Gang Chen,et al.  Fabrication and dry sliding wear behavior of in situ Al–K2ZrF6–KBF4 composites reinforced by Al3Zr and ZrB2 particles , 2008 .

[55]  F. J. Humphreys,et al.  The transition from discontinuous to continuous recrystallization in some aluminium alloys: II – annealing behaviour , 2004 .

[56]  T. Sakai,et al.  Grain refinement in as-cast 7475 aluminum alloy under hot deformation , 2003 .

[57]  H. J. McQueen,et al.  Constitutive analysis in hot working , 2002 .

[58]  M. Otsuka,et al.  Nucleation of new grains during discontinuous dynamic recrystallization of 99.998 mass% Aluminum at 453 K , 2001 .

[59]  S. N. Narayana Murty,et al.  Instability criteria for hot deformation of materials , 2000 .

[60]  M. E. Kassner,et al.  Current issues in recrystallization: a review , 1997 .

[61]  M. Sarma,et al.  On the evaluation of efficiency parameters in processing maps , 1997 .

[62]  K. Tsuzaki,et al.  Mechanism of dynamic continuous recrystallization during superplastic deformation in a microduplex stainless steel , 1996 .

[63]  F. M. Haussonne Review of the Synthesis Methods for AIN , 1995 .

[64]  D. Field,et al.  Texture evolution during plane strain deformation of aluminum , 1995 .

[65]  R. Raj Development of a Processing Map for Use in Warm-Forming and Hot-Forming Processes , 1981 .

[66]  W. Roberts,et al.  A nucleation criterion for dynamic recrystallization during hot working , 1978 .

[67]  F. J. Humphreys The nucleation of recrystallization at second phase particles in deformed aluminium , 1977 .

[68]  E. Akinlabi,et al.  Aluminum Matrix Composites for Industrial Use: Advances and Trends , 2017 .

[69]  D. Fu,et al.  Characterization of dynamic microstructural evolution of AA7150 aluminum alloy at high strain rate during hot deformation , 2016 .

[70]  J. Jonas,et al.  Plastic Deformation: Role of Recovery and Recrystallization , 2014 .

[71]  H. Mcqueen,et al.  Microstructural evolution in Al deformed to strains of 60 at 400°C , 1985 .