An analysis of the motion planning problem for a spherical rolling robot driven by internal rotors
暂无分享,去创建一个
Motoji Yamamoto | Mikhail M. Svinin | Akihiro Morinaga | M. Svinin | Motoji Yamamoto | Akihiro Morinaga
[1] R. Mukherjee,et al. Motion Planning for a Spherical Mobile Robot: Revisiting the Classical Ball-Plate Problem , 2002 .
[2] Shigeyuki Hosoe,et al. Motion Planning Algorithms for a Rolling Sphere With Limited Contact Area , 2008, IEEE Transactions on Robotics.
[3] Ravi N. Banavar,et al. Motion analysis of a spherical mobile robot , 2009, Robotica.
[4] Jean Levine,et al. Analysis and Control of Nonlinear Systems , 2009 .
[5] Anthony M. Bloch,et al. Controllability and motion planning of a multibody Chaplygin's sphere and Chaplygin's top , 2008 .
[6] George M. Siouris,et al. Applied Optimal Control: Optimization, Estimation, and Control , 1979, IEEE Transactions on Systems, Man, and Cybernetics.
[7] Richard M. Murray,et al. A Mathematical Introduction to Robotic Manipulation , 1994 .
[8] V. Jurdjevic. NON-EUCLIDEAN ELASTICA , 1995 .
[9] Zexiang Li,et al. Motion of two rigid bodies with rolling constraint , 1990, IEEE Trans. Robotics Autom..
[10] Sunil K. Agrawal,et al. Spherical rolling robot: a design and motion planning studies , 2000, IEEE Trans. Robotics Autom..
[11] Jean Lévine,et al. On Motion Planning for Robotic Manipulation with Permanent Rolling Contacts , 2002, Int. J. Robotics Res..
[12] Philippe Martin,et al. Any (controllable) driftless system with 3 inputs and 5 states is flat , 1995 .
[13] Velimir Jurdjevic. The geometry of the plate-ball problem , 1993 .
[14] Sunil K. Agrawal,et al. Differentially Flat Systems , 2004 .
[15] Antonio Bicchi,et al. Rolling bodies with regular surface: controllability theory and applications , 2000, IEEE Trans. Autom. Control..
[16] Motoji Yamamoto,et al. On the dynamic model and motion planning for a class of spherical rolling robots , 2012, 2012 IEEE International Conference on Robotics and Automation.