Ultra-Wideband, True-Time-Delay Reflectarray Antennas Using Ground-Plane-Backed, Miniaturized-Element Frequency Selective Surfaces

We introduce a new method for designing low-profile reflectarray antennas with broadband, true-time-delay (TTD) responses. Such structures are composed of numerous reflective spatial time-delay units distributed over a planar surface. Each spatial time-delay unit is a unit cell of a ground-plane-backed miniaturized-element frequency selective surface (MEFSS) composed of nonresonant elements. Each element is a lowpass type MEFSS composed of a stack of nonresonant patches separated from one another by thin dielectric substrates, and the whole structure is backed with a ground plane. A prototype of the proposed MEFSS-based TTD reflectarray with the focal length to aperture diameter ratio (f/D) of 0.87 operating at the center frequency of 10 GHz is designed, fabricated, and experimentally characterized both in time and frequency domains. It is demonstrated that the fabricated TTD reflectarray operates over a bandwidth of 40% without any significant chromatic aberrations. The proposed antenna provides a realized gain of 23 dB when fed with an X-band horn antenna and shows a gain variation of about 4 dB in the 8-12 GHz range. The antenna also shows consistent radiation characteristics and relatively low side-lobe levels across its entire band of operation.

[1]  Maurizio Bozzi,et al.  Performance comparison of different element shapes used in printed reflectarrays , 2003 .

[2]  A. K. Skrivervik,et al.  System Fidelity Factor: A New Method for Comparing UWB Antennas , 2011, IEEE Transactions on Antennas and Propagation.

[3]  Robert J. Mailloux,et al.  Phased Array Antenna Handbook , 1993 .

[4]  Sembiam R. Rengarajan Reflectarrays of Rectangular Microstrip Patches for Dual-Polarization Dual-Beam Radar Interferometers , 2013 .

[5]  Fan Yang,et al.  Broadband Reflectarray Antennas Using Double-Layer Subwavelength Patch Elements , 2010, IEEE Antennas and Wireless Propagation Letters.

[6]  A. Edalati,et al.  Wideband reflectarray antenna based on miniaturized element frequency selective surfaces , 2012, 2012 6th European Conference on Antennas and Propagation (EUCAP).

[7]  J. Encinar Design of two-layer printed reflectarrays using patches of variable size , 2001 .

[8]  Meng Li,et al.  Broadband True-Time-Delay Microwave Lenses Based on Miniaturized Element Frequency Selective Surfaces , 2013, IEEE Transactions on Antennas and Propagation.

[9]  Hongrui Jiang,et al.  Large-Scale Fluidic Tuning of Subwavelength Periodic Structures , 2014, IEEE Antennas and Wireless Propagation Letters.

[10]  J. Huang,et al.  Microstrip reflectarray , 1991, Antennas and Propagation Society Symposium 1991 Digest.

[11]  J. A. Zornoza,et al.  Three-layer printed reflectarrays for contoured beam space applications , 2004, IEEE Transactions on Antennas and Propagation.

[12]  Nader Behdad,et al.  A generalized method for synthesizing miniaturized element band-pass frequency selective surfaces , 2010, 2010 IEEE Antennas and Propagation Society International Symposium.

[13]  Paola Pirinoli,et al.  Broadband element for high-gain single-layer printed reflectarray antenna , 2007 .

[14]  M. Arrebola,et al.  Dual-Polarization Dual-Coverage Reflectarray for Space Applications , 2006, IEEE Transactions on Antennas and Propagation.

[15]  T. A. Metzler,et al.  Analysis of a reflectarray antenna using microstrip patches of variable size , 1993 .

[16]  Kai Chang,et al.  Design and performance of a microstrip reflectarray antenna , 1995 .

[17]  D. Pozar,et al.  Design of millimeter wave microstrip reflectarrays , 1997 .

[18]  David M. Pozar,et al.  Wideband reflectarrays using artificial impedance surfaces , 2007 .

[19]  Nader Behdad,et al.  Wideband True-Time-Delay Microwave Lenses Based on Metallo-Dielectric and All-Dielectric Lowpass Frequency Selective Surfaces , 2013, IEEE Transactions on Antennas and Propagation.

[20]  Seyed Mohamad Amin Momeni Hasan Abadi,et al.  Design of Wideband, FSS-Based MultiBeam Antennas Using the Effective Medium Approach , 2014, IEEE Transactions on Antennas and Propagation.

[21]  M. R. Chaharmir,et al.  Broadband reflectarray antenna with double cross loops , 2006 .

[22]  N. Alexopoulos,et al.  Effective Parameters for Metamorphic Materials and Metamaterials Through a Resonant Inverse Scattering Approach , 2007, IEEE Transactions on Microwave Theory and Techniques.

[23]  N. Behdad,et al.  Wideband Planar Microwave Lenses Using Sub-Wavelength Spatial Phase Shifters , 2011, IEEE Transactions on Antennas and Propagation.

[24]  D. Lamensdorf,et al.  Baseband-pulse-antenna techniques , 1994, IEEE Antennas and Propagation Magazine.

[25]  Dau-Chyrh Chang,et al.  Multiple-polarization microstrip reflectarray antenna with high efficiency and low cross-polarization , 1995 .

[26]  J. Encinar,et al.  Bandwidth Improvement in Large Reflectarrays by Using True-Time Delay , 2008, IEEE Transactions on Antennas and Propagation.

[27]  Daniele Bresciani,et al.  A Multi Facets Composite Panel Reflectarray Antenna for a Space Contoured Beam Antenna in Ku Band , 2013 .

[28]  José A. Encinar,et al.  Broadband design of three-layer printed reflectarrays , 2003 .

[29]  G. Toso,et al.  A Transmit-Receive Reflectarray Antenna for Direct Broadcast Satellite Applications , 2011, IEEE Transactions on Antennas and Propagation.

[30]  Eli Brookner Phased arrays and radars : Past, present and future , 2006 .

[31]  N. Misran,et al.  Design optimisation of ring elements for broadband reflectarray antennas , 2003 .

[32]  W. Menzel,et al.  Single-layer unit cells with optimized phase angle behavior , 2009, 2009 3rd European Conference on Antennas and Propagation.

[33]  David M. Pozar,et al.  A shaped-beam microstrip patch reflectarray , 1999 .