Improved binary artificial fish swarm algorithm for the 0-1 multidimensional knapsack problems

The 0–1 multidimensional knapsack problem (MKP) arises in many fields of optimization and is NP-hard. Several exact as well as heuristic methods exist. Recently, an artificial fish swarm algorithm has been developed in continuous global optimization. The algorithm uses a population of points in space to represent the position of fish in the school. In this paper, a binary version of the artificial fish swarm algorithm is proposed for solving the 0–1 MKP. In the proposed method, a point is represented by a binary string of 0/1 bits. Each bit of a trial point is generated by copying the corresponding bit from the current point or from some other specified point, with equal probability. Occasionally, some randomly chosen bits of a selected point are changed from 0 to 1, or 1 to 0, with an user defined probability. The infeasible solutions are made feasible by a decoding algorithm. A simple heuristic add_item is implemented to each feasible point aiming to improve the quality of that solution. A periodic reinitialization of the population greatly improves the quality of the solutions obtained by the algorithm. The proposed method is tested on a set of benchmark instances and a comparison with other methods available in literature is shown. The comparison shows that the proposed method gives a competitive performance when solving this kind of problems.

[1]  Andries P. Engelbrecht,et al.  A Generic Set-Based Particle Swarm Optimization Algorithm , 2011 .

[2]  Min Kong,et al.  A new ant colony optimization algorithm for the multidimensional Knapsack problem , 2008, Comput. Oper. Res..

[3]  Günther R. Raidl,et al.  The Multidimensional Knapsack Problem: Structure and Algorithms , 2010, INFORMS J. Comput..

[4]  John E. Beasley,et al.  A Genetic Algorithm for the Multidimensional Knapsack Problem , 1998, J. Heuristics.

[5]  Masatoshi Sakawa,et al.  Genetic algorithms with double strings for 0-1 programming problems , 2003, Eur. J. Oper. Res..

[6]  Feng-Tse Lin On The Generalized Fuzzy Multiconstraint 0-1 Knapsack Problem , 2006, 2006 IEEE International Conference on Fuzzy Systems.

[7]  Susan H. Xu,et al.  Greedy algorithm for the general multidimensional knapsack problem , 2007, Ann. Oper. Res..

[8]  A. L. Soyster,et al.  Zero-one programming with many variables and few constraints , 1978 .

[9]  David E. Goldberg,et al.  Genetic Algorithms in Search Optimization and Machine Learning , 1988 .

[10]  H. Weingartner,et al.  Mathematical Programming and the Analysis of Capital Budgeting Problems. , 1964 .

[11]  Rumen Andonov,et al.  A dynamic programming based reduction procedure for the multidimensional 0-1 knapsack problem , 2008, Eur. J. Oper. Res..

[12]  Ana Maria A. C. Rocha,et al.  An augmented Lagrangian fish swarm based method for global optimization , 2011, J. Comput. Appl. Math..

[13]  S. Martello,et al.  Algorithms for Knapsack Problems , 1987 .

[14]  Jianhua Wu,et al.  Solving 0-1 knapsack problem by a novel global harmony search algorithm , 2011, Appl. Soft Comput..

[15]  Hasan Pirkul,et al.  Efficient algorithms for solving multiconstraint zero-one knapsack problems to optimality , 1985, Math. Program..

[16]  Kusum Deep,et al.  A Modified Binary Particle Swarm Optimization for Knapsack Problems , 2012, Appl. Math. Comput..

[17]  Yong Wang,et al.  Optimal Multiuser Detection with Artificial Fish Swarm Algorithm , 2007, ICIC.

[18]  Siti Mariyam Hj. Shamsuddin,et al.  Binary Accelerated Particle Swarm Algorithm (BAPSA) for discrete optimization problems , 2012, Journal of Global Optimization.

[19]  Ana Maria A. C. Rocha,et al.  Solving Multidimensional 0-1 Knapsack Problem with an Artificial Fish Swarm Algorithm , 2012, ICCSA.

[20]  PuchingerJakob,et al.  The Multidimensional Knapsack Problem , 2010 .

[21]  Adel Nadjaran Toosi,et al.  Artificial fish swarm algorithm: a survey of the state-of-the-art, hybridization, combinatorial and indicative applications , 2012, Artificial Intelligence Review.

[22]  Narayanan Kumarappan,et al.  Hybrid improved binary particle swarm optimization approach for generation maintenance scheduling problem , 2013, Swarm Evol. Comput..

[23]  H. Martin Weingartner,et al.  Methods for the Solution of the Multidimensional 0/1 Knapsack Problem , 1967, Operational Research.

[24]  Michel Vasquez,et al.  Improved results on the 0-1 multidimensional knapsack problem , 2005, Eur. J. Oper. Res..

[25]  H. Martin Weingartner,et al.  Method for the Solution of the Multi-Dimensional 0/1 Knapsack Problem , 2015 .

[26]  Andrew Lewis,et al.  S-shaped versus V-shaped transfer functions for binary Particle Swarm Optimization , 2013, Swarm Evol. Comput..

[27]  Didier El Baz,et al.  Heuristics for the 0-1 multidimensional knapsack problem , 2009, Eur. J. Oper. Res..

[28]  Arnaud Fréville,et al.  The 0-1 bidimensional knapsack problem: Toward an efficient high-level primitive tool , 1996, J. Heuristics.

[29]  Nikos E. Mastorakis,et al.  Image Segmentation with Improved Artificial Fish Swarm Algorithm , 2009 .

[30]  José F. Fontanari,et al.  A statistical analysis of the knapsack problem , 1995 .

[31]  F. Djannaty,et al.  A Hybrid Genetic Algorithm for the Multidimensional Knapsack Problem , 2008 .

[32]  Saïd Hanafi,et al.  An efficient tabu search approach for the 0-1 multidimensional knapsack problem , 1998, Eur. J. Oper. Res..

[33]  A. Victor Cabot,et al.  An Enumeration Algorithm for Knapsack Problems , 1970, Oper. Res..

[34]  Ana Maria A. C. Rocha,et al.  Novel Fish Swarm Heuristics for Bound Constrained Global Optimization Problems , 2011, ICCSA.

[35]  Arnaud Fréville,et al.  The multidimensional 0-1 knapsack problem: An overview , 2004, Eur. J. Oper. Res..

[36]  Clifford C. Petersen,et al.  Computational Experience with Variants of the Balas Algorithm Applied to the Selection of R&D Projects , 1967 .

[37]  David Pisinger,et al.  Algorithms for Knapsack Problems , 1995 .

[38]  NeshatMehdi,et al.  Artificial fish swarm algorithm , 2014 .

[39]  Jacek M. Zurada,et al.  Swarm and Evolutionary Computation , 2012, Lecture Notes in Computer Science.

[40]  Andries Petrus Engelbrecht,et al.  Set-based particle swarm optimization applied to the multidimensional knapsack problem , 2012, Swarm Intelligence.

[41]  Jian-Wei Ma,et al.  An improved artificial fish-swarm algorithm and its application in feed-forward neural networks , 2005, 2005 International Conference on Machine Learning and Cybernetics.

[42]  Wei Shih,et al.  A Branch and Bound Method for the Multiconstraint Zero-One Knapsack Problem , 1979 .

[43]  Alberto Moraglio,et al.  Geometric Generalization of the Nelder-Mead Algorithm , 2010, EvoCOP.

[44]  D. E. Goldberg,et al.  Genetic Algorithms in Search , 1989 .

[45]  Luca Maria Gambardella,et al.  Maximum satisfiability: How good are tabu search and plateau moves in the worst-case? , 2005, Eur. J. Oper. Res..

[46]  Zbigniew Michalewicz,et al.  Genetic Algorithms + Data Structures = Evolution Programs , 1996, Springer Berlin Heidelberg.

[47]  Jingqi Fu,et al.  A Novel Probability Binary Particle Swarm Optimization Algorithm and Its Application , 2008, J. Softw..

[48]  Hasan Pirkul,et al.  A heuristic solution procedure for the multiconstraint zero‐one knapsack problem , 1987 .

[49]  Andreas Drexl,et al.  A simulated annealing approach to the multiconstraint zero-one knapsack problem , 1988, Computing.

[50]  Kenneth Schilling The growth of m-constraint random knapsacks , 1990 .

[51]  S. Raja Balachandar,et al.  A New Heuristic Approach for Large Size Zero-One Multi Knapsack Problem Using Intercept Matrix , 2010 .

[52]  Raymond R. Hill,et al.  Problem reduction heuristic for the 0-1 multidimensional knapsack problem , 2012, Comput. Oper. Res..

[53]  Min Huang,et al.  An Artificial Fish Swarm Algorithm Based and ABC Supported QoS Unicast Routing Scheme in NGI , 2006, ISPA Workshops.

[54]  Zbigniew Michalewicz,et al.  Genetic Algorithms + Data Structures = Evolution Programs , 1992, Artificial Intelligence.