On the identification of model structure in hydrological and environmental systems

[1] The paper presents a new recursive estimation algorithm designed expressly for the purpose of model structure identification (not for state estimation or primarily for parameter estimation) and discusses two applications thereof, one to a motivating, hypothetical example and one to data from whole-pond manipulations designed to explore sediment-nutrient-phytoplankton dynamics. The algorithm is the current culmination of a long-term technical development from state estimation using a Kalman filter, through state parameter estimation using an extended Kalman filter, through a recursive prediction error (RPE) algorithm for parameter estimation cast in the state space and recently modified for estimating time-varying model parameters, to an RPE algorithm for estimating time-varying parameters but cast in a parameter space formulation. It is concluded that the algorithm performs well, in the sense of being robust and indeed in revealing specifically where (but less so exactly how) a prior candidate model's structure may be in error.

[1]  M. B. Beck,et al.  Chapter 15 Elasto-plastic deformation of structure , 2002 .

[2]  Lennart Ljung,et al.  The Extended Kalman Filter as a Parameter Estimator for Linear Systems , 1979 .

[3]  S. Ciavatta,et al.  The Extended Kalman Filter (EKF) as a tool for the assimilation of high frequency water quality data , 2003 .

[4]  James W. Kirchner,et al.  The fine structure of water‐quality dynamics: the (high‐frequency) wave of the future , 2004 .

[5]  M. Bruce Beck,et al.  Understanding complex environmental systems : a dual approach , 2007 .

[6]  Peter C. Young,et al.  The Identification and Estimation of Nonlinear Stochastic Systems , 2001 .

[7]  D. Legates,et al.  Evaluating the use of “goodness‐of‐fit” Measures in hydrologic and hydroclimatic model validation , 1999 .

[8]  Neil McIntyre,et al.  Towards reduced uncertainty in conceptual rainfall‐runoff modelling: dynamic identifiability analysis , 2003 .

[9]  K Beven,et al.  On the concept of model structural error. , 2005, Water science and technology : a journal of the International Association on Water Pollution Research.

[10]  A. Parker,et al.  The role of iron-rich sediment in the biogeochemical cycling of phosphorus in Georgia Piedmont impoundments , 2004 .

[11]  M. B. Beck,et al.  Chapter 16 Detecting and forecasting growth in the seeds of change , 2002 .

[12]  M B Beck,et al.  Towards a synthesis of data-based and theory-based models of environmental systems. , 2006, Water science and technology : a journal of the International Association on Water Pollution Research.

[13]  M. B. Beck,et al.  The identification of conceptual hydrological models for surface water acidification , 1986 .

[14]  Harrison M. Wadsworth Handbook of Statistical Methods for Engineers and Scientists , 1990 .

[15]  Soroosh Sorooshian,et al.  Dual state-parameter estimation of hydrological models using ensemble Kalman filter , 2005 .

[16]  J. Norton Optimal smoothing in the identification of linear time-varying systems , 1975 .

[17]  Kuolin Hsu,et al.  Uncertainty assessment of hydrologic model states and parameters: Sequential data assimilation using the particle filter , 2005 .

[18]  Keith Beven,et al.  Chapter 12 Uncertainty and the detection of structural change in models of environmental systems , 2002 .

[19]  J D Stigter,et al.  On the development and application of a continuous-discrete recursive prediction error algorithm. , 2004, Mathematical biosciences.

[20]  H. Madsen,et al.  Bias aware Kalman filters: Comparison and improvements , 2006 .

[21]  S. Sorooshian,et al.  Effective and efficient global optimization for conceptual rainfall‐runoff models , 1992 .

[22]  M. Trosset,et al.  Bayesian recursive parameter estimation for hydrologic models , 2001 .

[23]  M. B. Beck,et al.  Identifying flow paths in models of surface water acidification , 1990 .

[24]  M. B. Beck,et al.  Identification of model structure for aquatic ecosystems using regionalized sensitivity analysis. , 2001, Water science and technology : a journal of the International Association on Water Pollution Research.

[25]  M. B. Beck,et al.  A new approach to the identification of model structure , 1994 .

[26]  M. B. Beck,et al.  A biogeochemical model for metabolism and nutrient cycling in a Southeastern Piedmont impoundment , 2006, Environ. Model. Softw..

[27]  M. B. Beck,et al.  Environmental foresight and structural change , 2005, Environ. Model. Softw..

[28]  Jeroen P. van der Sluijs,et al.  A framework for dealing with uncertainty due to model structure error , 2004 .

[29]  M. B. Beck Understanding Uncertain Environmental Systems , 1994 .

[30]  M. B. Beck,et al.  Water quality modeling: A review of the analysis of uncertainty , 1987 .

[31]  Peter C. Young,et al.  Recursive Estimation and Time-Series Analysis: An Introduction , 1984 .

[32]  Soroosh Sorooshian,et al.  Toward improved calibration of hydrologic models: Multiple and noncommensurable measures of information , 1998 .

[33]  Henrik Madsen,et al.  Calibration framework for a Kalman filter applied to a groundwater model , 2006 .

[34]  H. Wheater,et al.  Evaluation of two hybrid metric-conceptual models for simulating phosphorus transfer from agricultural land in the river enborne, a lowland UK catchment , 2005 .

[35]  Peter C. Young,et al.  Systematic Identification of DO-BOD Model Structure , 1976 .

[36]  A. Jazwinski Stochastic Processes and Filtering Theory , 1970 .

[37]  M. B. Beck,et al.  Elasto-plastic Deformation of Structure , 2002 .