Mathematical Aspects of Feynman Integrals

2 3 " What can be said at all can be said clearly; and whereof one cannot speak thereof one must be silent. " (Ludwig Wittgenstein) The idea that matter consists of smallest elements belongs to human culture since the ancient Greeks. The physics of the last few decades has given deep insight into the properties of these supposedly elementary particles. This illumination of the microcosmos is a story of success for two scientific concepts: the scattering experiment and quantum field theory. Scattering experiments, from Rutherford's scattering of α-particles off gold atoms in 1909 to the collision of highly accelerated protons at the Large Hadron Collider, expected to begin in 2009, have provided crucial information on the building blocks of matter. The success of a physical theory of elementary particles has to be judged by its capability to predict the values of quantities which can be measured in scattering experiments. The typical quantity to be measured in this kind of experiments is the so-called cross-section, from which in turn characteristic properties of the particles involved and their interaction can be deduced. The evolution of physical theories, probed on these experimental data, led to a model for the fundamental strong, electromagnetic and weak interactions of the known elementary particles. This so-called Standard Model is in good agreement with a wealth of observed phenomena. Nevertheless, the model is expected to be extended, depending on eagerly expected results from the Large Hadron Collider in the near future 1. The Standard Model is a highly successful quantum field theory whose application to the precise evaluation of an observable is usually far from trivial. In order to apply the model to the quantitative prediction of a cross-section one requires a perturbative formulation. The basic idea of perturbation theory is the assumption, that the interaction energies between the particles are relatively small compared to the energy of their free motion. The strength of an interaction is scaled by a so-called coupling parameter, which is assumed to be a relatively small quantity. An observable is then evaluated as a power series in the coupling parameter. This infinite series is truncated at a certain order and the precision of the result depends on the number of orders to be taken into account. The evaluation of the coefficients of this power series is in general highly elaborate. With increasing order of the perturbative expansion it becomes more and more …

[1]  S. Weinberg New approach to the renormalization group , 1973 .

[2]  J. B. Tausk Non-planar massless two-loop Feynman diagrams with four on-shell legs , 1999 .

[3]  Alan D. Sokal The multivariate Tutte polynomial (alias Potts model) for graphs and matroids , 2005, Surveys in Combinatorics.

[4]  Abdelmalek Salem,et al.  Condensation of Determinants , 2007, 0712.0822.

[5]  J. Vermaseren,et al.  Harmonic Polylogarithms , 1999, hep-ph/9905237.

[6]  Richard Kreckel,et al.  Introduction to the GiNaC Framework for Symbolic Computation within the C++ Programming Language , 2000, J. Symb. Comput..

[7]  G. Lepage,et al.  VEGAS - an adaptive multi-dimensional integration program , 1980 .

[8]  E. Remiddi,et al.  Analytic treatment of the two loop equal mass sunrise graph , 2004, hep-ph/0406160.

[9]  Andrew Lesniewski,et al.  Noncommutative Geometry , 1997 .

[10]  H. Whitney 2-Isomorphic Graphs , 1933 .

[11]  John W. Moon,et al.  Some determinant expansions and the matrix-tree theorem , 1994, Discret. Math..

[12]  G. Lepage A new algorithm for adaptive multidimensional integration , 1978 .

[13]  Yves Marie André,et al.  G-functions and geometry , 1989 .

[14]  M. Waldschmidt,et al.  Multiple Polylogarithms: An Introduction , 2002 .

[15]  Reinhard Diestel,et al.  Graph Theory , 1997 .

[16]  Matroids motives, and a conjecture of Kontsevich , 2000, math/0012198.

[17]  P. Belkale,et al.  Periods and Igusa local zeta functions , 2003 .

[18]  Stefan Weinzierl,et al.  Nested sums, expansion of transcendental functions and multiscale multiloop integrals , 2002 .

[19]  Helmut Koch,et al.  Über die Anzahl der Primzahlen unter einer gegebenen Größe , 1986 .

[20]  K. Wilson Quantum field-theory models in less than 4 dimensions , 1973 .

[21]  S. Groote,et al.  Threshold expansion of Feynman diagrams within a configuration space technique , 2000, hep-ph/0003115.

[22]  T.Gehrmann,et al.  Numerical evaluation of two-dimensional harmonic polylogarithms , 2002 .

[23]  Michael Atiyah,et al.  Resolution of Singularities and Division of Distributions , 1970 .

[24]  O. Tarasov Generalized recurrence relations for two-loop propagator integrals with arbitrary masses , 1997, hep-ph/9703319.

[25]  R. Stuart,et al.  On the precise determination of the Fermi coupling constant from the muon lifetime , 1999, hep-ph/9904240.

[26]  中西 襄 Graph theory and Feynman integrals , 1971 .

[27]  Differential Equations for Two-Loop Four-Point Functions , 1999, hep-ph/9912329.

[28]  Christian Bogner,et al.  Operating system: Unix , 1983 .

[29]  A. Denner,et al.  Gauge Theories of the Strong and Electroweak Interaction , 2001 .

[30]  Herwig Hauser,et al.  The Hironaka theorem on resolution of singularities (Or: A proof we always wanted to understand) , 2003 .

[31]  M. Marcolli Motivic renormalization and singularities , 2008, 0804.4824.

[32]  Joe W. Harris,et al.  Algebraic Geometry: A First Course , 1995 .

[33]  N. Reshetikhin,et al.  Quantum Groups , 1993, hep-th/9311069.

[34]  James Oxley Theory of Matroids: Graphs and Series-Parallel Networks , 1986 .

[35]  R. N. Lee Group structure of the integration-by-part identities and its application to the reduction of multiloop integrals , 2008, 0804.3008.

[36]  D. Zeillinger A short solution to Hironaka's polyhedra game , 2006 .

[37]  A. Smirnov Algorithm FIRE—Feynman Integral REduction , 2008, 0807.3243.

[38]  L. Dixon,et al.  Dimensionally-regulated pentagon integrals☆ , 1993, hep-ph/9306240.

[39]  H. Czyz,et al.  The Master differential equations for the two loop sunrise selfmass amplitudes , 1998, hep-th/9805118.

[40]  Giovanni M. Cicuta,et al.  Analytic renormalization via continuous space dimension , 1972 .

[41]  G. Kirchhoff Ueber die Auflösung der Gleichungen, auf welche man bei der Untersuchung der linearen Vertheilung galvanischer Ströme geführt wird , 1847 .

[42]  T. Binoth,et al.  Numerical evaluation of multi-loop integrals by sector decomposition , 2004 .

[43]  A. Denner,et al.  A Compact expression for the scalar one loop four point function , 1991 .

[44]  E. Zeidler Quantum Field Theory I: Basics in Mathematics and Physics: A Bridge between Mathematicians and Physicists , 2006 .

[45]  Gudrun Heinrich,et al.  Sector Decomposition , 2008, 0803.4177.

[46]  G. Aad,et al.  The ATLAS Experiment at the CERN Large Hadron Collide , 2008 .

[47]  A. Goshaw The ATLAS Experiment at the CERN Large Hadron Collider , 2008 .

[48]  M. Marcolli,et al.  Parametric Feynman integrals and determinant hypersurfaces , 2009, 0901.2107.

[49]  M. Marcolli,et al.  Supermanifolds from Feynman graphs , 2008, 0806.1681.

[50]  V. A. Smirnov,et al.  Hepp and Speer sectors within modern strategies of sector decomposition , 2008, 0812.4700.

[51]  W. Zlmmbrmann Convergence of Bogoliubov’s Method of Renormalization in Momentum Space , 2000 .

[52]  Criel Merino,et al.  Graph Polynomials and Their Applications I: The Tutte Polynomial , 2008, Structural Analysis of Complex Networks.

[53]  S. Encinas,et al.  Strong resolution of singularities in characteristic zero , 2002 .

[54]  E. Glover,et al.  A Calculational Formalism for One-Loop Integrals , 2004, hep-ph/0402152.

[55]  C. Anastasiou,et al.  Automatic integral reduction for higher order perturbative calculations , 2004 .

[56]  T. Binoth,et al.  An automatized algorithm to compute infrared divergent multi-loop integrals , 2000 .

[57]  F. Tkachov A theorem on analytical calculability of 4-loop renormalization group functions , 1981 .

[58]  H. Hironaka Resolution of Singularities of an Algebraic Variety Over a Field of Characteristic Zero: II , 1964 .

[59]  D. Zagier Values of Zeta Functions and Their Applications , 1994 .

[60]  Leonard Lewin,et al.  Polylogarithms and Associated Functions , 1981 .

[61]  Gerard 't Hooft,et al.  Dimensional regularization and the renormalization group , 1973 .

[62]  R. Tennant Algebra , 1941, Nature.

[63]  John R. Stembridge,et al.  Counting points on varieties over finite fields related to a conjecture of Kontsevich , 1998 .

[64]  A. Goncharov,et al.  Multiple polylogarithms and mixed Tate motives , 2001 .

[65]  C. Kuratowski Sur le problème des courbes gauches en Topologie , 1930 .

[66]  D. Zagier,et al.  Classical and Elliptic Polylogarithms and Special Values of L-Series , 2000 .

[67]  John Ellis,et al.  Int. J. Mod. Phys. , 2005 .

[68]  Tomohide Terasoma,et al.  Mixed Tate motives and multiple zeta values , 2002 .

[69]  F. Wilczek Quantum Field Theory , 1998, hep-th/9803075.

[70]  Jonathan M. Borwein,et al.  Special Values of Multidimensional Polylogarithms , 2001 .

[71]  Periods and algebraic deRham cohomology , 2005, math/0506113.

[72]  A. Mowshowitz The characteristic polynomial of a graph , 1972 .

[73]  L. Ryder,et al.  Quantum Field Theory , 2001, Foundations of Modern Physics.

[74]  M. Spivakovsky A Solution to Hironaka’s Polyhedra Game , 1983 .

[75]  C. G. Bollini,et al.  Lowest order “divergent” graphs in v-dimensional space , 1972 .

[76]  Junpei Fujimoto,et al.  New implementation of the sector decomposition on FORM , 2009, 0902.2656.

[77]  J. F. Ashmore,et al.  A method of gauge-invariant regularization , 1972 .

[78]  G. Hooft,et al.  Regularization and Renormalization of Gauge Fields , 1972 .

[79]  N. Hofreiter,et al.  Der Eulersche Dilogarithmus und seine Verallgemeinerungen , 1973 .

[80]  F. Y. Wu The Potts model , 1982 .

[81]  J. A. M. Vermaseren,et al.  The Multiple Zeta Value data mine , 2009, Comput. Phys. Commun..

[82]  Takahiro Ueda,et al.  A geometric method of sector decomposition , 2009, Comput. Phys. Commun..

[83]  D. Kreimer Knots and Feynman Diagrams , 2000 .

[84]  S. Chaiken A Combinatorial Proof of the All Minors Matrix Tree Theorem , 1982 .

[85]  I. Bierenbaum The massless two-loop two-point function and zeta functions in counterterms of Feynman diagrams , 2005 .

[86]  P. Baikov Explicit solutions of the 3-loop vacuum integral recurrence relations , 1996 .

[87]  D. Kreimer,et al.  RENORMALIZATION AND RESOLUTION OF SINGULARITIES , 2009, 0908.0633.

[88]  Stefan Weinzierl,et al.  Numerical evaluation of multiple polylogarithms , 2005, Comput. Phys. Commun..

[89]  T. B. Boffey,et al.  Applied Graph Theory , 1973 .

[90]  W. T. Tutte,et al.  A Contribution to the Theory of Chromatic Polynomials , 1954, Canadian Journal of Mathematics.

[91]  Francis Brown,et al.  The Massless Higher-Loop Two-Point Function , 2008, 0804.1660.

[92]  Gerard 't Hooft,et al.  Scalar One Loop Integrals , 1979 .

[93]  J. Glimm,et al.  QUANTUM FIELD THEORY MODELS. , 1985 .

[94]  The massless two-loop two-point function , 2003, hep-ph/0308311.

[95]  Applying Gröbner bases to solve reduction problems for Feynman integrals , 2005, hep-lat/0509187.

[96]  W. T. Tutte,et al.  On dichromatic polynomials , 1967 .

[97]  Christian Bogner,et al.  Periods and Feynman integrals , 2007, 0711.4863.

[98]  M. F.,et al.  Bibliography , 1985, Experimental Gerontology.

[99]  P. Michor Mathematics unlimited-2001 and Beyond , 2005 .

[100]  H. Hironaka Characteristic polyhedra of singularities , 1967 .

[101]  R. Bonciani,et al.  Master integrals with 2 and 3 massive propagators for the 2-loop electroweak form factor—planar case , 2004 .

[102]  B. Mohar THE LAPLACIAN SPECTRUM OF GRAPHS y , 1991 .

[103]  Gordon F. Royle,et al.  Algebraic Graph Theory , 2001, Graduate texts in mathematics.

[104]  M. Marcolli,et al.  ALGEBRO-GEOMETRIC FEYNMAN RULES , 2008, 0811.2514.

[105]  A. Connes,et al.  Noncommutative Geometry, Quantum Fields and Motives , 2007 .

[106]  N. N. Bogoliubow,et al.  Über die Multiplikation der Kausalfunktionen in der Quantentheorie der Felder , 1957 .

[107]  Beat Tödtli Methods for the reduction of three-loop QCD form factors , 2008, 0903.0540.

[108]  A. Buras,et al.  Deep-inelastic scattering beyond the leading order in asymptotically free gauge theories , 1978 .

[109]  M. Marcolli,et al.  Feynman motives and deletion-contraction relations , 2009, 0907.3225.

[110]  Michael William Newman,et al.  The Laplacian spectrum of graphs , 2001 .

[111]  R. J. Crewther,et al.  Introduction to quantum field theory , 1995, hep-th/9505152.

[112]  William T. Tutte A Ring in Graph Theory , 1947 .

[113]  Connection between Feynman integrals having different values of the space-time dimension. , 1996, Physical review. D, Particles and fields.

[114]  K. Wagner Über eine Eigenschaft der ebenen Komplexe , 1937 .

[115]  A. Denner Techniques for the Calculation of Electroweak Radiative Corrections at the One‐Loop Level and Results for W‐physics at LEP 200 , 2007, 0709.1075.

[116]  Doron Zeilberger Dodgson's Determinant-Evaluation Rule Proved by TWO-TIMING MEN and WOMEN , 1997, Electron. J. Comb..

[117]  R. Bonciani,et al.  Two-Loop Planar Corrections to Heavy-Quark Pair Production in the Quark-Antiquark Channel , 2009, 0906.3671.

[118]  V. A. Smirnov Analytical result for dimensionally regularized massless on shell double box , 1999 .

[119]  Don Zagier,et al.  The remarkable dilogarithm , 1988 .

[120]  On Motives Associated to Graph Polynomials , 2005, math/0510011.

[121]  F. Tkachov,et al.  Integration by parts: The algorithm to calculate β-functions in 4 loops , 1981 .

[122]  A. V. Smirnov,et al.  Feynman Integral Evaluation by a Sector decomposiTion Approach (FIESTA) , 2008, Comput. Phys. Commun..

[123]  C. Satyanarayana,et al.  Applied graph theory: Graphs and electrical networks , 1976, Proceedings of the IEEE.

[124]  A. Kelmans,et al.  A certain polynomial of a graph and graphs with an extremal number of trees , 1974 .

[125]  M. Veltman,et al.  One-loop corrections for e + e - annihilation into μ + μ - in the Weinberg model , 1979 .

[126]  J. Sheehan GRAPH THEORY (Encyclopedia of Mathematics and Its Applications, 21) , 1986 .

[127]  Ismael Souderes Motivic double shuffle , 2008, 0808.0248.

[128]  A. Denner,et al.  High-Energy Approximation of One-Loop Feynman Integrals , 1996 .

[129]  Michael E. Hoffman,et al.  Quasi-Shuffle Products , 1999 .

[130]  Nicholas M. Katz,et al.  On the differential equations satisfied by period matrices , 1968 .

[131]  Kuo-Tsai Chen,et al.  Iterated path integrals , 1977 .

[132]  Klaus Hepp,et al.  Proof of the Bogoliubov-Parasiuk theorem on renormalization , 1966 .

[133]  Andrew Pressley,et al.  QUANTUM GROUPS (Graduate Texts in Mathematics 155) , 1997 .

[134]  D. J. Broadhurst,et al.  Association of multiple zeta values with positive knots via Feynman diagrams up to 9 loops , 1996, hep-th/9609128.

[135]  Differential equations for Feynman graph amplitudes , 1997, hep-th/9711188.

[136]  V. Rivasseau,et al.  Topological Graph Polynomials and Quantum Field Theory, Part I: Heat Kernel Theories , 2008, 0811.0186.

[137]  E. Speer Ultraviolet and infrared singularity structure of generic Feynman amplitudes , 1975 .

[138]  Criel Merino,et al.  Graph Polynomials and Their Applications II: Interrelations and Interpretations , 2008, Structural Analysis of Complex Networks.

[139]  D. Kreimer MOTIVES ASSOCIATED TO GRAPHS , 2006 .

[140]  E. Glover,et al.  Master Integrals For Massless Two-Loop Vertex Diagrams With Three Offshell Legs , 2004, hep-ph/0407343.

[141]  S. Laporta,et al.  difference equations , 2001 .

[142]  Spanning trees and a conjecture of Kontsevich , 1998, math/9806055.

[143]  D. J. Broadhurst,et al.  Knots and Numbers in ϕ4 Theory to 7 Loops and Beyond , 1995 .

[144]  Eugene R. Speer,et al.  GENERIC FEYNMAN AMPLITUDES. , 1971 .