The use of monotonicity for choosing the regularization parameter in ill-posed problems
暂无分享,去创建一个
[1] A. Bakushinskii. Remarks on choosing a regularization parameter using the quasioptimality and ratio criterion , 1985 .
[2] Per Christian Hansen,et al. Regularization methods for large-scale problems , 1993 .
[3] A. Neubauer. An a posteriori parameter choice for Tikhonov regularization in the presence of modeling error , 1988 .
[4] Robert Plato,et al. On the regularization of projection methods for solving III-posed problems , 1990 .
[5] H. Gfrerer. An a posteriori parameter choice for ordinary and iterated Tikhonov regularization of ill-posed problems leading to optimal convergence rates , 1987 .
[6] V. Morozov. On the solution of functional equations by the method of regularization , 1966 .
[7] Dianne P. O'Leary,et al. The Use of the L-Curve in the Regularization of Discrete Ill-Posed Problems , 1993, SIAM J. Sci. Comput..
[8] Frank Natterer,et al. Regularisierung schlecht gestellter Probleme durch Projektionsverfahren , 1977 .
[9] P. Hansen. Rank-Deficient and Discrete Ill-Posed Problems: Numerical Aspects of Linear Inversion , 1987 .
[10] R. Plato,et al. On pseudo-optimal parameter choices and stopping rules for regularization methods in Banach spaces , 1996 .
[11] Per Christian Hansen,et al. Analysis of Discrete Ill-Posed Problems by Means of the L-Curve , 1992, SIAM Rev..
[12] H. Engl,et al. Optimal a posteriori parameter choice for Tikhonov regularization for solving nonlinear ill-posed problems , 1993 .
[13] G. Wahba. Practical Approximate Solutions to Linear Operator Equations When the Data are Noisy , 1977 .
[14] U. Tautenhahn,et al. On the Optimality of Regularization Methods for Solving Linear Ill-Posed Problems , 1994 .
[15] C. W. Groetsch,et al. The theory of Tikhonov regularization for Fredholm equations of the first kind , 1984 .
[16] H. Engl,et al. A posteriori parameter choice for general regularization methods for solving linear ill-posed problems , 1988 .
[17] Andreas Neubauer,et al. Regularization of ill-posed problems: optimal parameter choice in finite dimensions , 1989 .
[18] A. N. Tikhonov,et al. The approximate solution of Fredholm integral equations of the first kind , 1964 .
[19] G. Vainikko. The discrepancy principle for a class of regularization methods , 1982 .
[20] Mark A. Lukas,et al. Asymptotic behaviour of the minimum bound method for choosing the regularization parameter , 1998 .
[21] Gennadi Vainikko,et al. On the Optimality of Methods for Ill-Posed Problems , 1987 .
[22] Martin Hanke,et al. A General Heuristic for Choosing the Regularization Parameter in Ill-Posed Problems , 1996, SIAM J. Sci. Comput..
[23] V. Ivanov,et al. Approximate solution of linear operator equations in Hilbert space by the method of least squares. I , 1966 .