The use of monotonicity for choosing the regularization parameter in ill-posed problems

We discuss a new a posteriori rule for choosing the regularization parameter in regularization methods for solving linear ill-posed problems Ax = y with minimum-norm solution x. Main emphasis is devoted to the methods of ordinary and iterated Tikhonov regularization. We suppose that instead of y there are given noisy data y satisfying |y-y| with known noise level . The approach of the new rule consists of finding the smallest = ME for which it can be proved that the error |x-x| of the regularized solution xisstrictlymonotonicallyincreasingforincreasing-values, that is, there holds {d}{{d\alpha}}|x-x|2>0 for all (ME,). Due to this property we call our rule of choosing the monotone error rule (ME rule). Our ME rule leads to smaller errors than the a posteriori rule of Raus (1985 Acta Comment. Univ. Tartuensis 715 12-20 (in Russian)) and Gfrerer (1987 Math. Comput. 49 507-22). Furthermore, we discuss discretization issues and illustrate some of our theoretical results by numerical experiments.

[1]  A. Bakushinskii Remarks on choosing a regularization parameter using the quasioptimality and ratio criterion , 1985 .

[2]  Per Christian Hansen,et al.  Regularization methods for large-scale problems , 1993 .

[3]  A. Neubauer An a posteriori parameter choice for Tikhonov regularization in the presence of modeling error , 1988 .

[4]  Robert Plato,et al.  On the regularization of projection methods for solving III-posed problems , 1990 .

[5]  H. Gfrerer An a posteriori parameter choice for ordinary and iterated Tikhonov regularization of ill-posed problems leading to optimal convergence rates , 1987 .

[6]  V. Morozov On the solution of functional equations by the method of regularization , 1966 .

[7]  Dianne P. O'Leary,et al.  The Use of the L-Curve in the Regularization of Discrete Ill-Posed Problems , 1993, SIAM J. Sci. Comput..

[8]  Frank Natterer,et al.  Regularisierung schlecht gestellter Probleme durch Projektionsverfahren , 1977 .

[9]  P. Hansen Rank-Deficient and Discrete Ill-Posed Problems: Numerical Aspects of Linear Inversion , 1987 .

[10]  R. Plato,et al.  On pseudo-optimal parameter choices and stopping rules for regularization methods in Banach spaces , 1996 .

[11]  Per Christian Hansen,et al.  Analysis of Discrete Ill-Posed Problems by Means of the L-Curve , 1992, SIAM Rev..

[12]  H. Engl,et al.  Optimal a posteriori parameter choice for Tikhonov regularization for solving nonlinear ill-posed problems , 1993 .

[13]  G. Wahba Practical Approximate Solutions to Linear Operator Equations When the Data are Noisy , 1977 .

[14]  U. Tautenhahn,et al.  On the Optimality of Regularization Methods for Solving Linear Ill-Posed Problems , 1994 .

[15]  C. W. Groetsch,et al.  The theory of Tikhonov regularization for Fredholm equations of the first kind , 1984 .

[16]  H. Engl,et al.  A posteriori parameter choice for general regularization methods for solving linear ill-posed problems , 1988 .

[17]  Andreas Neubauer,et al.  Regularization of ill-posed problems: optimal parameter choice in finite dimensions , 1989 .

[18]  A. N. Tikhonov,et al.  The approximate solution of Fredholm integral equations of the first kind , 1964 .

[19]  G. Vainikko The discrepancy principle for a class of regularization methods , 1982 .

[20]  Mark A. Lukas,et al.  Asymptotic behaviour of the minimum bound method for choosing the regularization parameter , 1998 .

[21]  Gennadi Vainikko,et al.  On the Optimality of Methods for Ill-Posed Problems , 1987 .

[22]  Martin Hanke,et al.  A General Heuristic for Choosing the Regularization Parameter in Ill-Posed Problems , 1996, SIAM J. Sci. Comput..

[23]  V. Ivanov,et al.  Approximate solution of linear operator equations in Hilbert space by the method of least squares. I , 1966 .