Pi-conjugated molecules with fused rings for organic field-effect transistors: design, synthesis and applications.

Pi-conjugated molecular materials with fused rings are the focus of considerable interest in the emerging area of organic electronics, since the combination of excellent charge carrier mobility and high stability may lead to their practical applications. This tutorial review discusses the synthesis, properties and applications of pi-conjugated organic semiconducting materials, especially those with fused rings. The achievements to date, the remaining problems and challenges, and the key research that needs to be done in the near future are all discussed.

[1]  A. J. Lovinger,et al.  n-Channel Organic Transistor Materials Based on Naphthalene Frameworks , 1996 .

[2]  W. Xu,et al.  Organic field-effect transistors based on Langmuir-Blodgett films of an extended porphyrin analogue – Cyclo[6]pyrrole , 2005 .

[3]  F. Rosei,et al.  Heterocirculenes as a new class of organic semiconductors. , 2008, Chemical communications.

[4]  Adam J. Matzger,et al.  Synthesis and Structure of Fused α-Oligothiophenes with up to Seven Rings , 2005 .

[5]  H. Koinuma,et al.  High-performance organic field-effect transistors based on pi-extended tetrathiafulvalene derivatives. , 2005, Journal of the American Chemical Society.

[6]  Aram Amassian,et al.  Tetrathienoacene copolymers as high mobility, soluble organic semiconductors. , 2008, Journal of the American Chemical Society.

[7]  V. Nenajdenko,et al.  "Sulflower": a new form of carbon sulfide. , 2006, Angewandte Chemie.

[8]  Yunqi Liu,et al.  Synthesis, Characterization, and Field‐Effect Transistor Performance of Thieno[3,2‐b]thieno[2′,3′:4,5]thieno[2,3‐d]thiophene Derivatives , 2009, Advanced Functional Materials.

[9]  W. Xu,et al.  High-performance field-effect transistors based on Langmuir-Blodgett films of cyclo[8]pyrrole. , 2005, Langmuir : the ACS journal of surfaces and colloids.

[10]  Yong Cao,et al.  Thin film organic transistors from air-stable heteroarenes: anthra[1,2-b:4,3-b':5,6-b'':8,7-b''']tetrathiophene derivatives. , 2007, Organic letters.

[11]  R. Stoltenberg,et al.  Ambipolar, high performance, acene-based organic thin film transistors. , 2008, Journal of the American Chemical Society.

[12]  C. Di,et al.  High‐Performance and Stable Organic Thin‐Film Transistors Based on Fused Thiophenes , 2006 .

[13]  A. Dodabalapur,et al.  A soluble and air-stable organic semiconductor with high electron mobility , 2000, Nature.

[14]  C. Rovira,et al.  Correlation between crystal structure and mobility in organic field-effect transistors based on single crystals of tetrathiafulvalene derivatives. , 2004, Journal of the American Chemical Society.

[15]  K. Pernstich,et al.  New dithieno(3,2-b:2 ,3 -d)thiophene oligomers as promising materials for organic field-effect transistor applications , 2004 .

[16]  Jean-Luc Brédas,et al.  Charge transport parameters of the pentathienoacene crystal. , 2007, Journal of the American Chemical Society.

[17]  A. Elschner,et al.  Star‐Shaped Oligothiophenes for Solution‐Processible Organic Field‐Effect Transistors , 2003 .

[18]  Fumio Sato,et al.  Perfluoropentacene: high-performance p-n junctions and complementary circuits with pentacene. , 2004, Journal of the American Chemical Society.

[19]  H. Sirringhaus,et al.  A Highly π-Stacked Organic Semiconductor for Thin Film Transistors Based on Fused Thiophenes , 1998 .

[20]  Maxim Shkunov,et al.  Liquid-crystalline semiconducting polymers with high charge-carrier mobility , 2006, Nature materials.

[21]  W. R. Salaneck,et al.  From Ambi‐ to Unipolar Behavior in Discotic Dye Field‐Effect Transistors , 2008, Advanced materials.

[22]  A. Wakamiya,et al.  General synthesis of extended fused oligothiophenes consisting of an even number of thiophene rings. , 2007, Chemistry.

[23]  Donghang Yan,et al.  Tin (IV) phthalocyanine oxide: An air-stable semiconductor with high electron mobility , 2008 .

[24]  M. Berggren,et al.  Conductivity-type anisotropy in molecular solids , 1997 .

[25]  Daoben Zhu,et al.  Oligothiophene‐Functionalized Truxene: Star‐Shaped Compounds for Organic Field‐Effect Transistors , 2005 .

[26]  Z. Shuai,et al.  Dibenzotetrathiafulvalene Bisimides: New Building Blocks for Organic Electronic Materials** , 2007 .

[27]  D. M. Leeuw,et al.  Stability of n-type doped conducting polymers and consequences for polymeric microelectronic devices , 1997 .

[28]  Y. Liu,et al.  Novel copolymers incorporating dithieno[3,2-b:2′,3′-d]thiophene moieties for air-stable and high performance organic field-effect transistors , 2008 .

[29]  Fang Wang,et al.  A highly pi-stacked organic semiconductor for field-effect transistors based on linearly condensed pentathienoacene. , 2005, Journal of the American Chemical Society.

[30]  Jeffrey S. Moore Shape-Persistent Molecular Architectures of Nanoscale Dimension , 1997 .

[31]  E. Sudhölter,et al.  Liquid Crystalline Perylene diimides : Architecture and Charge Carrier Mobilities , 2000 .

[32]  Y. Yamashita,et al.  High performance n- and p-type field-effect transistors based on tetrathiafulvalene derivatives. , 2006, Journal of the American Chemical Society.

[33]  A. Facchetti,et al.  Air-stable, solution-processable n-channel and ambipolar semiconductors for thin-film transistors based on the indenofluorenebis(dicyanovinylene) core. , 2008, Journal of the American Chemical Society.

[34]  Kazuo Takimiya,et al.  Highly soluble [1]benzothieno[3,2-b]benzothiophene (BTBT) derivatives for high-performance, solution-processed organic field-effect transistors. , 2007, Journal of the American Chemical Society.

[35]  Jie Ying Gao,et al.  High‐Performance Field‐Effect Transistor Based on Dibenzo[d,d′]thieno[3,2‐b;4,5‐b′]dithiophene, an Easily Synthesized Semiconductor with High Ionization Potential , 2007 .

[36]  Yongfang Li,et al.  Poly(3,6-dihexyl-thieno[3,2-b]thiophene vinylene): Synthesis, Field-Effect Transistors, and Photovoltaic Properties , 2008 .

[37]  Daoben Zhu,et al.  Novel butterfly pyrene-based organic semiconductors for field effect transistors. , 2006, Chemical communications.

[38]  Ullrich Scherf,et al.  Organic semiconductors for solution-processable field-effect transistors (OFETs). , 2008, Angewandte Chemie.

[39]  Stephen R. Forrest,et al.  The path to ubiquitous and low-cost organic electronic appliances on plastic , 2004, Nature.

[40]  C. M. Li,et al.  High-Performance Thin-Film Transistors from Solution-Processed Dithienothiophene Polymer Semiconductor Nanoparticles , 2008 .

[41]  C. Rovira,et al.  Novel small molecules for organic field-effect transistors: towards processability and high performance. , 2008, Chemical Society reviews.

[42]  W. Xu,et al.  Synthesis, characterization, and field-effect transistor properties of carbazolenevinylene oligomers: from linear to cyclic architectures. , 2008, Chemistry.

[43]  E. van Veenendaal,et al.  Solution-processed ambipolar organic field-effect transistors and inverters , 2003, Nature materials.

[44]  Junliang Yang,et al.  High mobility vanadyl-phthalocyanine polycrystalline films for organic field-effect transistors , 2007 .

[45]  Samson A Jenekhe,et al.  High electron mobility in ladder polymer field-effect transistors. , 2003, Journal of the American Chemical Society.

[46]  Kazuo Takimiya,et al.  2,7-Diphenyl[1]benzothieno[3,2-b]benzothiophene, a new organic semiconductor for air-stable organic field-effect transistors with mobilities up to 2.0 cm2 V(-1) s(-1). , 2006, Journal of the American Chemical Society.

[47]  A. Facchetti,et al.  A high-mobility electron-transporting polymer for printed transistors , 2009, Nature.

[48]  Liqiang Li,et al.  An Ultra Closely π‐Stacked Organic Semiconductor for High Performance Field‐Effect Transistors , 2007 .

[49]  Daoben Zhu,et al.  Suzuki coupling reaction of 1,6,7,12-tetrabromoperylene bisimide. , 2006, Organic letters.

[50]  S. Mannsfeld,et al.  Pentaceno[2,3-b]thiophene, a hexacene analogue for organic thin film transistors. , 2009, Journal of the American Chemical Society.

[51]  Tobin J Marks,et al.  High-mobility air-stable n-type semiconductors with processing versatility: dicyanoperylene-3,4:9,10-bis(dicarboximides). , 2004, Angewandte Chemie.

[52]  Yunqi Liu,et al.  A facile synthesis of linear benzene-fused bis(tetrathiafulvalene) compounds and their application for organic field-effect transistors. , 2006, Chemical communications.

[53]  Henning Sirringhaus,et al.  A Zone‐Casting Technique for Device Fabrication of Field‐Effect Transistors Based on Discotic Hexa‐peri‐hexabenzocoronene , 2005 .

[54]  J. Rogers,et al.  High‐Performance n‐ and p‐Type Single‐Crystal Organic Transistors with Free‐Space Gate Dielectrics , 2004 .

[55]  Jean-Luc Brédas,et al.  Charge transport in organic semiconductors. , 2007, Chemical reviews.

[56]  Daoben Zhu,et al.  First synthesis of 2,3,6,7-tetrabromonaphthalene diimide. , 2007, Organic letters.

[57]  S. Parkin,et al.  Functionalized higher acenes: hexacene and heptacene. , 2005, Journal of the American Chemical Society.

[58]  Kazuo Takimiya,et al.  Facile Synthesis of Highly π-Extended Heteroarenes, Dinaphtho[2,3-b:2‘,3‘-f]chalcogenopheno[3,2-b]chalcogenophenes, and Their Application to Field-Effect Transistors , 2007 .

[59]  Bernard Kippelen,et al.  A high-mobility electron-transport polymer with broad absorption and its use in field-effect transistors and all-polymer solar cells. , 2007, Journal of the American Chemical Society.

[60]  F. Würthner,et al.  Core-tetrasubstituted naphthalene diimides: synthesis, optical properties, and redox characteristics. , 2007, The Journal of organic chemistry.