Interacting boson problems can be QMA hard.

Computing the ground-state energy of interacting electron problems has recently been shown to be hard for quantum Merlin Arthur (QMA), a quantum analogue of the complexity class NP. Fermionic problems are usually hard, a phenomenon widely attributed to the so-called sign problem. The corresponding bosonic problems are, according to conventional wisdom, tractable. Here, we demonstrate that the complexity of interacting boson problems is also QMA hard. Moreover, the bosonic version of N-representability problem is QMA complete. Consequently, these problems are unlikely to have efficient quantum algorithms.

[1]  New construction for a QMA complete three-local Hamiltonian , 2007, quant-ph/0612113.

[2]  A. Auerbach Interacting electrons and quantum magnetism , 1994 .

[3]  L. Lovász,et al.  Geometric Algorithms and Combinatorial Optimization , 1981 .

[4]  Scott Aaronson,et al.  On perfect completeness for QMA , 2008, Quantum Inf. Comput..

[5]  F. Barahona On the computational complexity of Ising spin glass models , 1982 .

[6]  Julia Kempe,et al.  The Complexity of the Local Hamiltonian Problem , 2004, FSTTCS.

[7]  Alastair Kay Quantum-Merlin-Arthur-complete translationally invariant Hamiltonian problem and the complexity of finding ground-state energies in physical systems , 2007 .

[8]  E. Knill,et al.  A scheme for efficient quantum computation with linear optics , 2001, Nature.

[9]  Matthias Troyer,et al.  Computational complexity and fundamental limitations to fermionic quantum Monte Carlo simulations , 2004, Physical review letters.

[10]  Mikhail N. Vyalyi,et al.  Classical and Quantum Computation , 2002, Graduate studies in mathematics.

[11]  S. Coppersmith Using the Renormalization Group to Classify Boolean Functions , 2008 .

[12]  B. R. Patton Solid State Physics: Solid State Physics , 2001 .

[13]  F. Verstraete,et al.  Matrix product states, projected entangled pair states, and variational renormalization group methods for quantum spin systems , 2008, 0907.2796.

[14]  A. J. Coleman THE STRUCTURE OF FERMION DENSITY MATRICES , 1963 .

[15]  B. Judd,et al.  Reduced Density Matrices: Coulson's Challenge , 2000 .

[16]  Yong Zhang,et al.  Fast amplification of QMA , 2009, Quantum Inf. Comput..

[17]  C. A. Coulson,et al.  Present State of Molecular Structure Calculations , 1960 .

[18]  F. Verstraete,et al.  Computational complexity of interacting electrons and fundamental limitations of density functional theory , 2007, 0712.0483.

[19]  Chris Marriott,et al.  Quantum Arthur–Merlin games , 2004, Proceedings. 19th IEEE Annual Conference on Computational Complexity, 2004..

[20]  Roderich Moessner,et al.  Random quantum satisfiabiilty , 2010 .

[21]  Julia Kempe,et al.  3-local Hamitonian is QMA-complete , 2003 .

[22]  D. Ceperley Path integrals in the theory of condensed helium , 1995 .

[23]  Christos H. Papadimitriou,et al.  Computational complexity , 1993 .

[24]  R. H. Tredgold Density Matrix and the Many-Body Problem , 1957 .

[25]  A. J. Coleman,et al.  Reduced Density Matrices , 2000 .

[26]  David P. DiVincenzo,et al.  The complexity of stoquastic local Hamiltonian problems , 2006, Quantum Inf. Comput..

[27]  G. Vidal Class of quantum many-body states that can be efficiently simulated. , 2006, Physical review letters.