Interacting boson problems can be QMA hard.
暂无分享,去创建一个
Ashwin Nayak | Michele Mosca | Tzu-Chieh Wei | T. Wei | M. Mosca | A. Nayak
[1] New construction for a QMA complete three-local Hamiltonian , 2007, quant-ph/0612113.
[2] A. Auerbach. Interacting electrons and quantum magnetism , 1994 .
[3] L. Lovász,et al. Geometric Algorithms and Combinatorial Optimization , 1981 .
[4] Scott Aaronson,et al. On perfect completeness for QMA , 2008, Quantum Inf. Comput..
[5] F. Barahona. On the computational complexity of Ising spin glass models , 1982 .
[6] Julia Kempe,et al. The Complexity of the Local Hamiltonian Problem , 2004, FSTTCS.
[7] Alastair Kay. Quantum-Merlin-Arthur-complete translationally invariant Hamiltonian problem and the complexity of finding ground-state energies in physical systems , 2007 .
[8] E. Knill,et al. A scheme for efficient quantum computation with linear optics , 2001, Nature.
[9] Matthias Troyer,et al. Computational complexity and fundamental limitations to fermionic quantum Monte Carlo simulations , 2004, Physical review letters.
[10] Mikhail N. Vyalyi,et al. Classical and Quantum Computation , 2002, Graduate studies in mathematics.
[11] S. Coppersmith. Using the Renormalization Group to Classify Boolean Functions , 2008 .
[12] B. R. Patton. Solid State Physics: Solid State Physics , 2001 .
[13] F. Verstraete,et al. Matrix product states, projected entangled pair states, and variational renormalization group methods for quantum spin systems , 2008, 0907.2796.
[14] A. J. Coleman. THE STRUCTURE OF FERMION DENSITY MATRICES , 1963 .
[15] B. Judd,et al. Reduced Density Matrices: Coulson's Challenge , 2000 .
[16] Yong Zhang,et al. Fast amplification of QMA , 2009, Quantum Inf. Comput..
[17] C. A. Coulson,et al. Present State of Molecular Structure Calculations , 1960 .
[18] F. Verstraete,et al. Computational complexity of interacting electrons and fundamental limitations of density functional theory , 2007, 0712.0483.
[19] Chris Marriott,et al. Quantum Arthur–Merlin games , 2004, Proceedings. 19th IEEE Annual Conference on Computational Complexity, 2004..
[20] Roderich Moessner,et al. Random quantum satisfiabiilty , 2010 .
[21] Julia Kempe,et al. 3-local Hamitonian is QMA-complete , 2003 .
[22] D. Ceperley. Path integrals in the theory of condensed helium , 1995 .
[23] Christos H. Papadimitriou,et al. Computational complexity , 1993 .
[24] R. H. Tredgold. Density Matrix and the Many-Body Problem , 1957 .
[25] A. J. Coleman,et al. Reduced Density Matrices , 2000 .
[26] David P. DiVincenzo,et al. The complexity of stoquastic local Hamiltonian problems , 2006, Quantum Inf. Comput..
[27] G. Vidal. Class of quantum many-body states that can be efficiently simulated. , 2006, Physical review letters.