On a mixed and multiscale domain decomposition method

This paper presents a reexamination of a multiscale computational strategy with homogenization in space and time for the resolution of highly heterogeneous structural problems, focusing on its suitability for parallel computing. Spatially, this strategy can be viewed as a mixed, multilevel domain decomposition method (or, more accurately, as a “structure decomposition” method). Regarding time, a “parallel” property is also described. We also draw bridges between this and other current approaches.

[1]  P. Ladevèze Nonlinear Computational Structural Mechanics: New Approaches and Non-Incremental Methods of Calculation , 1998 .

[2]  David Dureisseix,et al.  A LATIN computational strategy for multiphysics problems: application to poroelasticity , 2003 .

[3]  J. Tinsley Oden,et al.  Hierarchical modeling of heterogeneous solids , 1996 .

[4]  J. Cros,et al.  A preconditioner for the Schur complement domain decomposition method , 2003 .

[5]  D. Rixen,et al.  FETI‐DP: a dual–primal unified FETI method—part I: A faster alternative to the two‐level FETI method , 2001 .

[6]  F. Devries,et al.  Homogenization and damage for composite structures , 1989 .

[7]  Charbel Farhat,et al.  Time‐decomposed parallel time‐integrators: theory and feasibility studies for fluid, structure, and fluid–structure applications , 2003 .

[8]  P. Tallec,et al.  Domain decomposition methods for large linearly elliptic three-dimensional problems , 1991 .

[9]  Carlos A. Felippa,et al.  A contact formulation based on localized Lagrange multipliers: formulation and application to two‐dimensional problems , 2002 .

[10]  W. Brekelmans,et al.  Prediction of the mechanical behavior of nonlinear heterogeneous systems by multi-level finite element modeling , 1998 .

[11]  Pierre Ladevèze,et al.  Mastering Calculations in Linear and Nonlinear Mechanics , 2004 .

[12]  Pierre Ladevèze,et al.  Multiscale modelling and computational strategies for composites , 2004 .

[13]  Carlos A. Felippa,et al.  An algebraically partitioned FETI method for parallel structural analysis: algorithm description , 1997 .

[14]  David Dureisseix,et al.  A multi-time-scale strategy for multiphysics problems: Application to poroelasticity , 2003 .

[15]  V. Kouznetsova,et al.  Multi‐scale constitutive modelling of heterogeneous materials with a gradient‐enhanced computational homogenization scheme , 2002 .

[16]  E. Sanchez-Palencia,et al.  Comportements local et macroscopique d'un type de milieux physiques heterogenes , 1974 .

[17]  Laurent Champaney,et al.  A Micro-Macro Approach for Crack Propagation with Local Enrichment , 2004 .

[18]  Olivier Allix,et al.  Nonlinear localization strategies for domain decomposition methods: Application to post-buckling analyses , 2007 .

[19]  P. Ladevèze,et al.  On a Multiscale Computational Strategy with Time and Space Homogenization for Structural Mechanics , 2003 .

[20]  Pierre Alart,et al.  Parallel Computational Strategies for Multicontact Problems: Applications to Cellular and Granular Media , 2003 .

[21]  F. Feyel A multilevel finite element method (FE2) to describe the response of highly non-linear structures using generalized continua , 2003 .

[22]  J. Mandel Balancing domain decomposition , 1993 .

[23]  Pierre Ladevèze,et al.  A multiscale computational method with time and space homogenization , 2002 .

[24]  CLARK R. DOHRMANN,et al.  A Preconditioner for Substructuring Based on Constrained Energy Minimization , 2003, SIAM J. Sci. Comput..

[25]  Modelling of nonstationary heat conduction problems in micro-periodic composites using homogenisation theory with corrective terms , 2000 .

[26]  David Dureisseix,et al.  A micro–macro and parallel computational strategy for highly heterogeneous structures , 2001 .

[27]  P. Ladevèze,et al.  A modular approach to 3-D impact computation with frictional contact , 2000 .

[28]  Charbel Farhat,et al.  Implicit parallel processing in structural mechanics , 1994 .

[29]  O. Widlund,et al.  On a selective reuse of Krylov subspaces in Newton-Krylov approaches for nonlinear elasticity , 2003 .

[30]  Y. Maday,et al.  A parareal in time procedure for the control of partial differential equations , 2002 .

[31]  P. Tallec Domain decomposition methods in computational mechanics , 1994 .

[32]  P. Gosselet,et al.  Non-overlapping domain decomposition methods in structural mechanics , 2006, 1208.4209.

[33]  P. Ladevèze,et al.  A multiscale computational approach for contact problems , 2002 .

[34]  Patrick Le Tallec,et al.  A Neumann--Neumann Domain Decomposition Algorithm for Solving Plate and Shell Problems , 1995 .

[35]  E. S. Palencia Non-Homogeneous Media and Vibration Theory , 1980 .

[36]  Olof B. Widlund,et al.  Some Computational Results for Dual-Primal FETI Methods for Elliptic Problems in 3D , 2005 .

[37]  C. Farhat,et al.  The two-level FETI method for static and dynamic plate problems Part I: An optimal iterative solver for biharmonic systems , 1998 .

[38]  Pierre Ladevèze,et al.  Une stratégie de calcul multiéchelle avec homogénéisation en espace et en temps , 2002 .

[39]  A. Bensoussan,et al.  Asymptotic analysis for periodic structures , 1979 .

[40]  Pierre Ladevèze,et al.  A 3D shock computational strategy for real assembly and shock attenuator , 2002 .

[41]  Mark S. Shephard,et al.  Computational plasticity for composite structures based on mathematical homogenization: Theory and practice , 1997 .

[42]  Carlos A. Felippa,et al.  A variational principle for the formulation of partitioned structural systems , 2000 .

[43]  Pierre Ladevèze,et al.  Multiscale Computational Strategy With Time and Space Homogenization: A Radial-Type Approximation Technique for Solving Microproblems , 2004 .