On a mixed and multiscale domain decomposition method
暂无分享,去创建一个
[1] P. Ladevèze. Nonlinear Computational Structural Mechanics: New Approaches and Non-Incremental Methods of Calculation , 1998 .
[2] David Dureisseix,et al. A LATIN computational strategy for multiphysics problems: application to poroelasticity , 2003 .
[3] J. Tinsley Oden,et al. Hierarchical modeling of heterogeneous solids , 1996 .
[4] J. Cros,et al. A preconditioner for the Schur complement domain decomposition method , 2003 .
[5] D. Rixen,et al. FETI‐DP: a dual–primal unified FETI method—part I: A faster alternative to the two‐level FETI method , 2001 .
[6] F. Devries,et al. Homogenization and damage for composite structures , 1989 .
[7] Charbel Farhat,et al. Time‐decomposed parallel time‐integrators: theory and feasibility studies for fluid, structure, and fluid–structure applications , 2003 .
[8] P. Tallec,et al. Domain decomposition methods for large linearly elliptic three-dimensional problems , 1991 .
[9] Carlos A. Felippa,et al. A contact formulation based on localized Lagrange multipliers: formulation and application to two‐dimensional problems , 2002 .
[10] W. Brekelmans,et al. Prediction of the mechanical behavior of nonlinear heterogeneous systems by multi-level finite element modeling , 1998 .
[11] Pierre Ladevèze,et al. Mastering Calculations in Linear and Nonlinear Mechanics , 2004 .
[12] Pierre Ladevèze,et al. Multiscale modelling and computational strategies for composites , 2004 .
[13] Carlos A. Felippa,et al. An algebraically partitioned FETI method for parallel structural analysis: algorithm description , 1997 .
[14] David Dureisseix,et al. A multi-time-scale strategy for multiphysics problems: Application to poroelasticity , 2003 .
[15] V. Kouznetsova,et al. Multi‐scale constitutive modelling of heterogeneous materials with a gradient‐enhanced computational homogenization scheme , 2002 .
[16] E. Sanchez-Palencia,et al. Comportements local et macroscopique d'un type de milieux physiques heterogenes , 1974 .
[17] Laurent Champaney,et al. A Micro-Macro Approach for Crack Propagation with Local Enrichment , 2004 .
[18] Olivier Allix,et al. Nonlinear localization strategies for domain decomposition methods: Application to post-buckling analyses , 2007 .
[19] P. Ladevèze,et al. On a Multiscale Computational Strategy with Time and Space Homogenization for Structural Mechanics , 2003 .
[20] Pierre Alart,et al. Parallel Computational Strategies for Multicontact Problems: Applications to Cellular and Granular Media , 2003 .
[21] F. Feyel. A multilevel finite element method (FE2) to describe the response of highly non-linear structures using generalized continua , 2003 .
[22] J. Mandel. Balancing domain decomposition , 1993 .
[23] Pierre Ladevèze,et al. A multiscale computational method with time and space homogenization , 2002 .
[24] CLARK R. DOHRMANN,et al. A Preconditioner for Substructuring Based on Constrained Energy Minimization , 2003, SIAM J. Sci. Comput..
[26] David Dureisseix,et al. A micro–macro and parallel computational strategy for highly heterogeneous structures , 2001 .
[27] P. Ladevèze,et al. A modular approach to 3-D impact computation with frictional contact , 2000 .
[28] Charbel Farhat,et al. Implicit parallel processing in structural mechanics , 1994 .
[29] O. Widlund,et al. On a selective reuse of Krylov subspaces in Newton-Krylov approaches for nonlinear elasticity , 2003 .
[30] Y. Maday,et al. A parareal in time procedure for the control of partial differential equations , 2002 .
[31] P. Tallec. Domain decomposition methods in computational mechanics , 1994 .
[32] P. Gosselet,et al. Non-overlapping domain decomposition methods in structural mechanics , 2006, 1208.4209.
[33] P. Ladevèze,et al. A multiscale computational approach for contact problems , 2002 .
[34] Patrick Le Tallec,et al. A Neumann--Neumann Domain Decomposition Algorithm for Solving Plate and Shell Problems , 1995 .
[35] E. S. Palencia. Non-Homogeneous Media and Vibration Theory , 1980 .
[36] Olof B. Widlund,et al. Some Computational Results for Dual-Primal FETI Methods for Elliptic Problems in 3D , 2005 .
[37] C. Farhat,et al. The two-level FETI method for static and dynamic plate problems Part I: An optimal iterative solver for biharmonic systems , 1998 .
[38] Pierre Ladevèze,et al. Une stratégie de calcul multiéchelle avec homogénéisation en espace et en temps , 2002 .
[39] A. Bensoussan,et al. Asymptotic analysis for periodic structures , 1979 .
[40] Pierre Ladevèze,et al. A 3D shock computational strategy for real assembly and shock attenuator , 2002 .
[41] Mark S. Shephard,et al. Computational plasticity for composite structures based on mathematical homogenization: Theory and practice , 1997 .
[42] Carlos A. Felippa,et al. A variational principle for the formulation of partitioned structural systems , 2000 .
[43] Pierre Ladevèze,et al. Multiscale Computational Strategy With Time and Space Homogenization: A Radial-Type Approximation Technique for Solving Microproblems , 2004 .