Modal Abstractions in µCRL

We describe a framework to generate modal abstract approximations from process algebraic specifications, written in the language μCRL. We allow abstraction of state variables and action labels. Moreover, we introduce a new format for process specifications called Modal Linear Process Equation (MLPE). Every transition step may lead to a set of abstract tates labelled-with a set of abstract actions. We use MLPEs to characterize abstract interpretations of systems and to generate Modal Labelled Transition Systems, in which transitions may have two modalities may and must. We prove that the abstractions are sound for the full action-based μ-calculus. Finally, we apply the result to check some safety and liveness properties for the bounded retransmission protocol.

[1]  Diego Latella,et al.  Towards Automatic Temporal Logic Verification of Value Passing Process Algebra Using Abstract Interpretation , 1996, CONCUR.

[2]  Dennis Dams,et al.  The bounded retransmission protocol revisited , 1997, INFINITY.

[3]  Jan Friso Groote,et al.  The Syntax and Semantics of μCRL , 1995 .

[4]  Bernd Finkbeiner,et al.  Abstraction and Modular Verification of Infinite-State Reactive Systems , 1997, Requirements Targeting Software and Systems Engineering.

[5]  Wan Fokkink,et al.  Introduction to Process Algebra , 1999, Texts in Theoretical Computer Science. An EATCS Series.

[6]  Orna Grumberg,et al.  Abstract interpretation of reactive systems , 1997, TOPL.

[7]  Jan Friso Groote,et al.  New developments around the mCRL tool set , 2003, Electron. Notes Theor. Comput. Sci..

[8]  Jan Friso Groote,et al.  A Bounded Retransmission Protocol for Large Data Packets , 1993, AMAST.

[9]  Flemming Nielson,et al.  Abstract interpretation: a semantics-based tool for program analysis , 1995, LICS 1995.

[10]  Jan Friso Groote,et al.  µCRL: A Toolset for Analysing Algebraic Specifications , 2001, CAV.

[11]  Alain Kerbrat,et al.  CADP - A Protocol Validation and Verification Toolbox , 1996, CAV.

[12]  Joseph Sifakis,et al.  Property preserving abstractions for the verification of concurrent systems , 1995, Formal Methods Syst. Des..

[13]  Radha Jagadeesan,et al.  Modal Transition Systems: A Foundation for Three-Valued Program Analysis , 2001, ESOP.

[14]  Kim G. Larsen,et al.  Modal Specifications , 1989, Automatic Verification Methods for Finite State Systems.

[15]  Jan A. Bergstra,et al.  Algebra of Communicating Processes with Abstraction , 1985, Theor. Comput. Sci..

[16]  Kim G. Larsen,et al.  A modal process logic , 1988, [1988] Proceedings. Third Annual Information Symposium on Logic in Computer Science.

[17]  Edmund M. Clarke,et al.  Model checking and abstraction , 1994, TOPL.

[18]  Radha Jagadeesan,et al.  Abstraction-Based Model Checking Using Modal Transition Systems , 2001, CONCUR.

[19]  Patrick Cousot,et al.  Systematic design of program analysis frameworks , 1979, POPL.

[20]  Radu Mateescu,et al.  Vérification des propriétés temporelles des programmes parallèles , 1998 .

[21]  Edmund M. Clarke,et al.  Model checking, abstraction, and compositional verification , 1993 .

[22]  Dexter Kozen,et al.  Results on the Propositional µ-Calculus , 1982, ICALP.

[23]  Colin Stirling,et al.  Modal and temporal logics , 1993, LICS 1993.

[24]  Patrick Cousot,et al.  Abstract Interpretation Based Formal Methods and Future Challenges , 2001, Informatics.

[25]  David A. Schmidt Binary Relations for Abstraction and Refinement , 2000 .

[26]  Patrick Cousot,et al.  Abstract interpretation: a unified lattice model for static analysis of programs by construction or approximation of fixpoints , 1977, POPL.

[27]  Dennis Dams,et al.  Abstract interpretation and partition refinement for model checking , 1996 .

[28]  Natarajan Shankar,et al.  PVS: Combining Specification, Proof Checking, and Model Checking , 1996, FMCAD.

[29]  Edmund M. Clarke,et al.  Model Checking , 1999, Handbook of Automated Reasoning.