Characterization of early transcriptional responses to cadmium in the root and leaf of Cd-resistant Salix matsudana Koidz

[1]  Caiyun He,et al.  De Novo Transcriptome and Small RNA Analysis of Two Chinese Willow Cultivars Reveals Stress Response Genes in Salix matsudana , 2014, PloS one.

[2]  D. Milardi,et al.  Zinc to cadmium replacement in the prokaryotic zinc-finger domain. , 2014, Metallomics : integrated biometal science.

[3]  O. Dhankher,et al.  A γ-Glutamyl Cyclotransferase Protects Arabidopsis Plants from Heavy Metal Toxicity by Recycling Glutamate to Maintain Glutathione Homeostasis[C][W] , 2013, Plant Cell.

[4]  Chuanping Yang,et al.  Agrobacterium tumefaciens-mediated genetic transformation of Salix matsudana Koidz. using mature seeds. , 2013, Tree physiology.

[5]  T. Yin,et al.  Transcriptome Analysis of the Differentially Expressed Genes in the Male and Female Shrub Willows (Salix suchowensis) , 2013, PloS one.

[6]  M. Tyree,et al.  A Transcriptomic Network Underlies Microstructural and Physiological Responses to Cadmium in Populus × canescens1[C][W] , 2013, Plant Physiology.

[7]  Chung-Wen Lin,et al.  Comparison of early transcriptome responses to copper and cadmium in rice roots , 2013, Plant Molecular Biology.

[8]  Federico Zinc to cadmium replacement in the prokaryotic zinc-finger domain , 2013 .

[9]  S. Åkesson,et al.  Characterisation of a transcriptome to find sequence differences between two differentially migrating subspecies of the willow warbler Phylloscopus trochilus , 2013, BMC Genomics.

[10]  Yuan Zhang,et al.  Comparative physiological responses of Solanum nigrum and Solanum torvum to cadmium stress. , 2012, The New phytologist.

[11]  M. Aarts,et al.  The molecular mechanism of zinc and cadmium stress response in plants , 2012, Cellular and Molecular Life Sciences.

[12]  Zhongming Zhao,et al.  NGS catalog: A database of next generation sequencing studies in humans , 2012, Human mutation.

[13]  M. Sang,et al.  De Novo Transcriptomic Analysis of an Oleaginous Microalga: Pathway Description and Gene Discovery for Production of Next-Generation Biofuels , 2012, PloS one.

[14]  Youngsook Lee,et al.  The phytochelatin transporters AtABCC1 and AtABCC2 mediate tolerance to cadmium and mercury. , 2012, The Plant journal : for cell and molecular biology.

[15]  T. Glenn Field guide to next‐generation DNA sequencers , 2011, Molecular ecology resources.

[16]  N. Friedman,et al.  Trinity: reconstructing a full-length transcriptome without a genome from RNA-Seq data , 2011, Nature Biotechnology.

[17]  M. Krzesłowska,et al.  Is callose a barrier for lead ions entering Lemna minor L. root cells? , 2011, Protoplasma.

[18]  L. Chang,et al.  De novo characterization of Lycoris sprengeri transcriptome using Illumina GA II , 2011 .

[19]  P. A. Rea,et al.  Arsenic tolerance in Arabidopsis is mediated by two ABCC-type phytochelatin transporters , 2010, Proceedings of the National Academy of Sciences.

[20]  P. Mazzafera,et al.  Abiotic and biotic stresses and changes in the lignin content and composition in plants. , 2010, Journal of integrative plant biology.

[21]  Subash C. Gupta,et al.  Heat shock proteins in toxicology: how close and how far? , 2010, Life sciences.

[22]  M. Krzesłowska The cell wall in plant cell response to trace metals: polysaccharide remodeling and its role in defense strategy , 2010, Acta Physiologiae Plantarum.

[23]  L. Kochian,et al.  Transcriptional regulation of metal transport genes and mineral nutrition during acclimatization to cadmium and zinc in the Cd/Zn hyperaccumulator, Thlaspi caerulescens (Ganges population). , 2010, The New phytologist.

[24]  V. Citovsky,et al.  Biology of callose (β-1,3-glucan) turnover at plasmodesmata , 2010, Protoplasma.

[25]  M. Iqbal,et al.  Phytoremediation of Heavy Metals: Physiological and Molecular Mechanisms , 2009, The Botanical Review.

[26]  Jaco Vangronsveld,et al.  Short-Rotation Coppice of Willow for Phytoremediation of a Metal-Contaminated Agricultural Area: A Sustainability Assessment , 2009, BioEnergy Research.

[27]  Justin O. Borevitz,et al.  Root Suberin Forms an Extracellular Barrier That Affects Water Relations and Mineral Nutrition in Arabidopsis , 2009, PLoS genetics.

[28]  C. Cobbett,et al.  HMA P-type ATPases are the major mechanism for root-to-shoot Cd translocation in Arabidopsis thaliana. , 2009, The New phytologist.

[29]  Mark G. M. Aarts,et al.  Expression differences for genes involved in lignin, glutathione and sulphate metabolism in response to cadmium in Arabidopsis thaliana and the related Zn/Cd-hyperaccumulator Thlaspi caerulescens. , 2008, Plant, cell & environment.

[30]  P. Goldsbrough,et al.  Examining the Specific Contributions of Individual Arabidopsis Metallothioneins to Copper Distribution and Metal Tolerance1[OA] , 2008, Plant Physiology.

[31]  W. Wenzel,et al.  Hydroponic screening for metal resistance and accumulation of cadmium and zinc in twenty clones of willows and poplars. , 2007, Environmental pollution.

[32]  Q. Mahmood,et al.  Enhancement of Lead Uptake by Hyperaccumulator Plant Species Sedum alfredii Hance Using EDTA and IAA , 2007, Bulletin of environmental contamination and toxicology.

[33]  I. Brunner,et al.  Exudation of organic acid anions from poplar roots after exposure to Al, Cu and Zn. , 2007, Tree physiology.

[34]  Z. Guo,et al.  Differential responses of antioxidative system to chilling and drought in four rice cultivars differing in sensitivity. , 2006, Plant physiology and biochemistry : PPB.

[35]  A. Loraine,et al.  Transcriptional Coordination of the Metabolic Network in Arabidopsis1[W][OA] , 2006, Plant Physiology.

[36]  Lin Fang,et al.  WEGO: a web tool for plotting GO annotations , 2006, Nucleic Acids Res..

[37]  C. Junot,et al.  The early responses of Arabidopsis thaliana cells to cadmium exposure explored by protein and metabolite profiling analyses , 2006, Proteomics.

[38]  W. Horst,et al.  Cell-wall pectin and its degree of methylation in the maize root-apex: significance for genotypic differences in aluminium resistance , 2005 .

[39]  Juan Miguel García-Gómez,et al.  BIOINFORMATICS APPLICATIONS NOTE Sequence analysis Manipulation of FASTQ data with Galaxy , 2005 .

[40]  R. Moreno-Sánchez,et al.  Sulfur assimilation and glutathione metabolism under cadmium stress in yeast, protists and plants. , 2005, FEMS microbiology reviews.

[41]  K. Roberts,et al.  The expression patterns of arabinogalactan-protein AtAGP30 and GLABRA2 reveal a role for abscisic acid in the early stages of root epidermal patterning. , 2004, The Plant journal : for cell and molecular biology.

[42]  L. Reale,et al.  Responses induced by high concentration of cadmium in Phragmites australis roots. , 2004, Physiologia plantarum.

[43]  Michael J. Haydon,et al.  P-Type ATPase Heavy Metal Transporters with Roles in Essential Zinc Homeostasis in Arabidopsis , 2004, The Plant Cell Online.

[44]  S. Rhee,et al.  MAPMAN: a user-driven tool to display genomics data sets onto diagrams of metabolic pathways and other biological processes. , 2004, The Plant journal : for cell and molecular biology.

[45]  C. Keller,et al.  Phytoextraction capacity of trees growing on a metal contaminated soil , 2003, Plant and Soil.

[46]  Leonard Krall,et al.  Cross-species microarray transcript profiling reveals high constitutive expression of metal homeostasis genes in shoots of the zinc hyperaccumulator Arabidopsis halleri. , 2004, The Plant journal : for cell and molecular biology.

[47]  H. V. Van Onckelen,et al.  The Role of Auxin, pH, and Stress in the Activation of Embryogenic Cell Division in Leaf Protoplast-Derived Cells of Alfalfa1 , 2002, Plant Physiology.

[48]  A. Polle,et al.  Plant responses to abiotic stresses: heavy metal-induced oxidative stress and protection by mycorrhization. , 2002, Journal of experimental botany.

[49]  M. Halonen,et al.  Isolation of high quality RNA from bilberry (Vaccinium myrtillus L.) fruit , 2001, Molecular biotechnology.

[50]  H. Küpper,et al.  Cellular compartmentation of cadmium and zinc in relation to other elements in the hyperaccumulator Arabidopsis halleri , 2000, Planta.

[51]  C. Cobbett Phytochelatins and their roles in heavy metal detoxification. , 2000, Plant physiology.

[52]  L. Kochian,et al.  The molecular physiology of heavy metal transport in the Zn/Cd hyperaccumulator Thlaspi caerulescens. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[53]  M. Greger,et al.  Use of willow in phytoextraction. , 1999 .

[54]  F. Skoog,et al.  A revised medium for rapid growth and bio assays with tobacco tissue cultures , 1962 .