A PRACTICAL APPROACH TO SPATIO-TEMPORAL ANALYSIS
暂无分享,去创建一个
[1] Noel A Cressie,et al. Statistics for Spatio-Temporal Data , 2011 .
[2] Mike Rees,et al. 5. Statistics for Spatial Data , 1993 .
[3] Breda Munoz,et al. Design‐based empirical orthogonal function model for environmental monitoring data analysis , 2008 .
[4] M. Stein. Space–Time Covariance Functions , 2005 .
[5] Alexandra M. Schmidt,et al. Spatially Varying Autoregressive Processes , 2011, Technometrics.
[6] T. Gneiting. Nonseparable, Stationary Covariance Functions for Space–Time Data , 2002 .
[7] F. J. Alonso,et al. The Kriged Kalman filter , 1998 .
[8] Mark F. J. Steel,et al. A general class of nonseparable space–time covariance models , 2011 .
[9] Richard A. Davis,et al. Introduction to time series and forecasting , 1998 .
[10] J. Andrew Royle,et al. Multiresolution models for nonstationary spatial covariance functions , 2002 .
[11] P. Guttorp,et al. Nonparametric Estimation of Nonstationary Spatial Covariance Structure , 1992 .
[12] P. Guttorp,et al. Geostatistical Space-Time Models, Stationarity, Separability, and Full Symmetry , 2007 .
[13] David Higdon,et al. Non-Stationary Spatial Modeling , 2022, 2212.08043.
[14] P. Diggle,et al. A Class of Convolution‐Based Models for Spatio‐Temporal Processes with Non‐Separable Covariance Structure , 2010 .
[15] Noel A Cressie,et al. Statistics for Spatial Data. , 1992 .
[16] Madhusudan K. Iyengar,et al. Uncovering energy-efficiency opportunities in data centers , 2009, IBM J. Res. Dev..
[17] Roger Woodard,et al. Interpolation of Spatial Data: Some Theory for Kriging , 1999, Technometrics.
[18] Mikyoung Jun,et al. Nonstationary covariance models for global data , 2008, 0901.3980.
[19] D. Shepard. A two-dimensional interpolation function for irregularly-spaced data , 1968, ACM National Conference.
[20] Tilmann Gneiting,et al. Space–Time Covariance Models , 2013 .
[21] C. Obled,et al. Some developments in the use of empirical orthogonal functions for mapping meteorological fields , 1986 .