Relative perturbation theory for definite matrix pairs and hyperbolic eigenvalue problem

In this paper, new relative perturbation bounds for the eigenvalues as well as for the eigensubspaces are developed for definite Hermitian matrix pairs and the quadratic hyperbolic eigenvalue problem. First, we derive relative perturbation bounds for the eigenvalues and the sin ? ? type theorems for the eigensubspaces of the definite matrix pairs ( A , B ) , where both A , B ? C m × m are Hermitian nonsingular matrices with particular emphasis, where B is a diagonal of ?1. Further, we consider the following quadratic hyperbolic eigenvalue problem ( µ 2 M + µ C + K ) v = 0 , where M , C , K ? C n × n are given Hermitian matrices. Using proper linearization and new relative perturbation bounds for definite matrix pairs ( A , B ) , we develop corresponding relative perturbation bounds for the eigenvalues and the sin ? ? type theorems for the eigensubspaces for the considered quadratic hyperbolic eigenvalue problem. The new bounds are uniform and depend only on matrices M, C, K, perturbations ?M, ?C and ?K and standard relative gaps. The quality of new bounds is illustrated through numerical examples.

[1]  Ren-Cang Li On perturbations of matrix pencils with real spectra , 1994 .

[2]  Moody T. Chu,et al.  Spectral decomposition of real symmetric quadratic λ-matrices and its applications , 2009, Math. Comput..

[3]  Rajendra Bhatia,et al.  On perturbations of matrix pencils with real spectra. II , 1996, Math. Comput..

[4]  P. Lancaster,et al.  Factorization of selfadjoint matrix polynomials with constant signature , 1982 .

[5]  Froilán M. Dopico,et al.  First order spectral perturbation theory of square singular matrix pencils , 2008 .

[6]  James Demmel,et al.  Jacobi's Method is More Accurate than QR , 1989, SIAM J. Matrix Anal. Appl..

[7]  B. Parlett The Symmetric Eigenvalue Problem , 1981 .

[8]  Relative perturbation theory for a class of diagonalizable Hermitian matrix pairs , 2003 .

[9]  Ren-Cang Li,et al.  THE HYPERBOLIC QUADRATIC EIGENVALUE PROBLEM , 2015, Forum of Mathematics, Sigma.

[10]  Ivan Slapničar,et al.  Relative perturbation theory for hyperbolic eigenvalue problem , 2000 .

[11]  Ivan Slapničar,et al.  Floating-point perturbations of Hermitian matrices , 1993 .

[12]  Generalized eigenvalues of a definite hermitian matrix pair , 1998 .

[13]  N. Truhar,et al.  The rotation of eigenspaces of perturbed matrix pairs II , 2014 .

[14]  K. Veselié A Jacobi eigenreduction algorithm for definite matrix pairs , 1993 .

[15]  Ren-Cang Li,et al.  A sin2Θ theorem for graded indefinite Hermitian matrices , 2003 .

[16]  Karl Meerbergen,et al.  The Quadratic Eigenvalue Problem , 2001, SIAM Rev..

[17]  K. Veselic,et al.  Damped Oscillations of Linear Systems: A Mathematical Introduction , 2011 .

[18]  Ren-Cang Li,et al.  Relative Perturbation Theory: II. Eigenspace and Singular Subspace Variations , 1996, SIAM J. Matrix Anal. Appl..

[19]  Nicholas J. Higham,et al.  NLEVP: A Collection of Nonlinear Eigenvalue Problems , 2013, TOMS.

[20]  Françoise Tisseur,et al.  Perturbation theory for homogeneous polynomial eigenvalue problems , 2003 .

[21]  Jesse L. Barlow,et al.  Optimal perturbation bounds for the Hermitian eigenvalue problem , 2000 .

[22]  Volker Mehrmann,et al.  Vector Spaces of Linearizations for Matrix Polynomials , 2006, SIAM J. Matrix Anal. Appl..

[23]  Y. Nakatsukasa Absolute and relative Weyl theorems for generalized eigenvalue problems , 2010 .

[24]  Chun-Hua Guo,et al.  Algorithms for hyperbolic quadratic eigenvalue problems , 2005, Math. Comput..

[25]  P. Lancaster,et al.  Overdamped and Gyroscopic Vibrating Systems , 1992 .

[26]  N. Higham,et al.  Detecting a definite Hermitian pair and a hyperbolic or elliptic quadratic eigenvalue problem, and associated nearness problems , 2002 .

[27]  Ninoslav Truhar,et al.  The rotation of eigenspaces of perturbed matrix pairs , 2010 .