Compressive Hyperspectral Imaging With Side Information

A blind compressive sensing algorithm is proposed to reconstruct hyperspectral images from spectrally-compressed measurements. The wavelength-dependent data are coded and then superposed, mapping the three-dimensional hyperspectral datacube to a two-dimensional image. The inversion algorithm learns a dictionary in situ from the measurements via global-local shrinkage priors. By using RGB images as side information of the compressive sensing system, the proposed approach is extended to learn a coupled dictionary from the joint dataset of the compressed measurements and the corresponding RGB images, to improve reconstruction quality. A prototype camera is built using a liquid-crystal-on-silicon modulator. Experimental reconstructions of hyperspectral datacubes from both simulated and real compressed measurements demonstrate the efficacy of the proposed inversion algorithm, the feasibility of the camera and the benefit of side information.

[1]  A F Goetz,et al.  Imaging Spectrometry for Earth Remote Sensing , 1985, Science.

[2]  Volkan Cevher,et al.  Learning with Compressible Priors , 2009, NIPS.

[3]  Lawrence Carin,et al.  Nonparametric factor analysis with beta process priors , 2009, ICML '09.

[4]  David B. Dunson,et al.  Compressive Sensing on Manifolds Using a Nonparametric Mixture of Factor Analyzers: Algorithm and Performance Bounds , 2010, IEEE Transactions on Signal Processing.

[5]  A. Bruckstein,et al.  K-SVD : An Algorithm for Designing of Overcomplete Dictionaries for Sparse Representation , 2005 .

[6]  James G. Scott,et al.  Local shrinkage rules, Lévy processes and regularized regression , 2010, 1010.3390.

[7]  Mário A. T. Figueiredo,et al.  Gradient Projection for Sparse Reconstruction: Application to Compressed Sensing and Other Inverse Problems , 2007, IEEE Journal of Selected Topics in Signal Processing.

[8]  Matthew J. Beal Variational algorithms for approximate Bayesian inference , 2003 .

[9]  S. Frick,et al.  Compressed Sensing , 2014, Computer Vision, A Reference Guide.

[10]  James G. Scott,et al.  Shrink Globally, Act Locally: Sparse Bayesian Regularization and Prediction , 2022 .

[11]  Aggelos K. Katsaggelos,et al.  Bayesian Compressive Sensing Using Laplace Priors , 2010, IEEE Transactions on Image Processing.

[12]  Xiaobai Sun,et al.  Video rate spectral imaging using a coded aperture snapshot spectral imager. , 2009, Optics express.

[13]  A. Robert Calderbank,et al.  Communications-Inspired Projection Design with Application to Compressive Sensing , 2012, SIAM J. Imaging Sci..

[14]  Guillermo Sapiro,et al.  Video Compressive Sensing Using Gaussian Mixture Models , 2014, IEEE Transactions on Image Processing.

[15]  J. Griffin,et al.  BAYESIAN HYPER‐LASSOS WITH NON‐CONVEX PENALIZATION , 2011 .

[16]  H. Zou The Adaptive Lasso and Its Oracle Properties , 2006 .

[17]  Stéphane Mallat,et al.  Solving Inverse Problems With Piecewise Linear Estimators: From Gaussian Mixture Models to Structured Sparsity , 2010, IEEE Transactions on Image Processing.

[18]  M. Elad,et al.  $rm K$-SVD: An Algorithm for Designing Overcomplete Dictionaries for Sparse Representation , 2006, IEEE Transactions on Signal Processing.

[19]  Vinayak A. Rao,et al.  Hierarchical Infinite Divisibility for Multiscale Shrinkage , 2014, IEEE Transactions on Signal Processing.

[20]  Michael Elad,et al.  Sparse Representation for Color Image Restoration , 2008, IEEE Transactions on Image Processing.

[21]  Wolfgang Osten,et al.  Optical Imaging and Metrology: Advanced Technologies , 2012 .

[22]  James G. Scott,et al.  The horseshoe estimator for sparse signals , 2010 .

[23]  Bruno A. Olshausen,et al.  Group Sparse Coding with a Laplacian Scale Mixture Prior , 2010, NIPS.

[24]  Yonina C. Eldar,et al.  Blind Compressed Sensing , 2010, IEEE Transactions on Information Theory.

[25]  Lawrence Carin,et al.  Coded Hyperspectral Imaging and Blind Compressive Sensing , 2013, SIAM J. Imaging Sci..

[26]  D. Foster,et al.  Frequency of metamerism in natural scenes. , 2007, Journal of the Optical Society of America. A, Optics, image science, and vision.

[27]  A. Robert Calderbank,et al.  Classification and Reconstruction of High-Dimensional Signals From Low-Dimensional Features in the Presence of Side Information , 2014, IEEE Transactions on Information Theory.

[28]  José M. Bioucas-Dias,et al.  A New TwIST: Two-Step Iterative Shrinkage/Thresholding Algorithms for Image Restoration , 2007, IEEE Transactions on Image Processing.

[29]  David J. Brady,et al.  Multiframe image estimation for coded aperture snapshot spectral imagers. , 2010, Applied optics.

[30]  Yin Zhang,et al.  A Compressive Sensing and Unmixing Scheme for Hyperspectral Data Processing , 2012, IEEE Transactions on Image Processing.

[31]  Guillermo Sapiro,et al.  Statistical Compressed Sensing of Gaussian Mixture Models , 2011, IEEE Transactions on Signal Processing.

[32]  M. Descour,et al.  Computed-tomography imaging spectrometer: experimental calibration and reconstruction results. , 1995, Applied optics.

[33]  Amir Averbuch,et al.  Adaptive Compressed Image Sensing Using Dictionaries , 2012, SIAM J. Imaging Sci..

[34]  David B. Dunson,et al.  Nonparametric Bayesian Dictionary Learning for Analysis of Noisy and Incomplete Images , 2012, IEEE Transactions on Image Processing.

[35]  D. Dunson,et al.  Sparse Bayesian infinite factor models. , 2011, Biometrika.

[36]  Ashwin A. Wagadarikar,et al.  Single disperser design for coded aperture snapshot spectral imaging. , 2008, Applied optics.

[37]  Emmanuel J. Candès,et al.  Robust uncertainty principles: exact signal reconstruction from highly incomplete frequency information , 2004, IEEE Transactions on Information Theory.

[38]  Adrian Stern,et al.  Compressive sensing spectrometry based on liquid crystal devices. , 2013, Optics letters.

[39]  M E Gehm,et al.  Single-shot compressive spectral imaging with a dual-disperser architecture. , 2007, Optics express.

[40]  Wotao Yin,et al.  Bregman Iterative Algorithms for (cid:2) 1 -Minimization with Applications to Compressed Sensing ∗ , 2008 .

[41]  M. Dewhirst,et al.  Hyperspectral imaging of hemoglobin saturation in tumor microvasculature and tumor hypoxia development. , 2005, Journal of biomedical optics.

[42]  Guillermo Sapiro,et al.  Compressive Sensing by Learning a Gaussian Mixture Model From Measurements , 2015, IEEE Transactions on Image Processing.

[43]  Eustace L. Dereniak,et al.  Hyperspectral imaging for astronomy and space surviellance , 2004, SPIE Optics + Photonics.

[44]  Guillermo Sapiro,et al.  Online dictionary learning for sparse coding , 2009, ICML '09.

[45]  Michael E. Gehm,et al.  Adaptive spectroscopy: towards adaptive spectral imaging , 2008, SPIE Defense + Commercial Sensing.

[46]  YuanXin,et al.  Classification and Reconstruction of High-Dimensional Signals From Low-Dimensional Features in the Presence of Side Information , 2016 .

[47]  Guillermo Sapiro,et al.  Dictionary Learning for Noisy and Incomplete Hyperspectral Images , 2012, SIAM J. Imaging Sci..

[48]  Guillermo Sapiro,et al.  Low-Cost Compressive Sensing for Color Video and Depth , 2014, 2014 IEEE Conference on Computer Vision and Pattern Recognition.

[49]  Guillermo Sapiro,et al.  Ieee Transactions on Signal Processing Task-driven Adaptive Statistical Compressive Sensing of Gaussian Mixture Models Ieee Transactions on Signal Processing 2 , 2022 .

[50]  David B. Dunson,et al.  Generalized Beta Mixtures of Gaussians , 2011, NIPS.

[51]  David J. Brady,et al.  Coded Aperture Snapshot Spectral Imager Based on Liquid Crystal Spatial Light Modulator , 2013 .

[52]  Esko Herrala,et al.  Imaging spectrometer for process industry applications , 1994, Other Conferences.

[53]  Michael Elad,et al.  Image Denoising Via Sparse and Redundant Representations Over Learned Dictionaries , 2006, IEEE Transactions on Image Processing.

[54]  Patrick J. Treado,et al.  Imaging Spectrometers for Fluorescence and Raman Microscopy: Acousto-Optic and Liquid Crystal Tunable Filters , 1994 .

[55]  Guillermo Sapiro,et al.  Learning to Sense Sparse Signals: Simultaneous Sensing Matrix and Sparsifying Dictionary Optimization , 2009, IEEE Transactions on Image Processing.

[56]  Guillermo Sapiro,et al.  Adaptive temporal compressive sensing for video , 2013, 2013 IEEE International Conference on Image Processing.

[57]  Dennis W Prather,et al.  Development of a digital-micromirror-device-based multishot snapshot spectral imaging system. , 2011, Optics letters.