Linear and non-linear price decentralization

[1]  Charalambos D. Aliprantis,et al.  Non-marketed options, non-existence of equilibria, and non-linear prices , 2004, J. Econ. Theory.

[2]  Charalambos D. Aliprantis,et al.  Locally Solid Riesz Spaces with Applications to Economics , 2003 .

[3]  Monique Florenzano,et al.  General Equilibrium Analysis: Existence and Optimality Properties of Equilibria , 2003 .

[4]  R. Tourky,et al.  MARKETS THAT DON'T REPLICATE ANY OPTION , 2002 .

[5]  Gylfi Zoega,et al.  The Modigliani 'Puzzle' , 2002 .

[6]  R. Tourky,et al.  The super order dual of an ordered vector space and the Riesz–Kantorovich formula , 2001 .

[7]  V. Marakulin Equilibria in infinite dimensional commodity spaces revisited , 2001 .

[8]  Nicholas C. Yannelis,et al.  A Theory of Value with Non-linear Prices: Equilibrium Analysis beyond Vector Lattices , 2001, J. Econ. Theory.

[9]  M. Florenzano,et al.  Production equilibria in vector lattices , 2001 .

[10]  Nicholas C. Yannelis,et al.  Cone Conditions in General Equilibrium Theory , 2000, J. Econ. Theory.

[11]  Rabee Tourky,et al.  The limit theorem on the core of a production economy in vector lattices with unordered preferences , 1999 .

[12]  Monique Florenzano,et al.  Decentralizing Edgeworth equilibria in economies with many commodities , 1999 .

[13]  C. Aliprantis,et al.  Portfolio dominance and optimality in infinite security markets , 1998 .

[14]  Rabee Tourky,et al.  A New Approach to the Limit Theorem on the Core of an Economy in Vector Lattices , 1998 .

[15]  Cuong Le Van,et al.  Complete Characterization of Yannelis-Zame and Chichilnisky-Kalman-Mas-Colell Properness Conditions on Preferences for Separable Concave Functions Defined in L[superscript p subscript +] and L[superscript p] , 1996 .

[16]  Charalambos D. Aliprantis,et al.  When is the core equivalence theorem valid? , 1991 .

[17]  Andreu Mas-Colell,et al.  A New Approach to the Existence of Equilibria in Vector Lattices , 1991 .

[18]  Monique Florenzano,et al.  Edgeworth equilibria, fuzzy core, and equilibria of a production economy without ordered preferences , 1990 .

[19]  Paulo Klinger Monteiro,et al.  Equilibrium without uniform conditions , 1989 .

[20]  Charalambos D. Aliprantis,et al.  Edgeworth equilibria in production economies , 1987 .

[21]  William R. Zame,et al.  Competitive Equilibria in Production Economies with an Infinite-Dimensional Commodity Space , 1987 .

[22]  Andreu Mas-Colell,et al.  The Price Equilibrium Existence Problem in Topological Vector Lattice s , 1986 .

[23]  S. Ross Options and Efficiency , 1976 .

[24]  T. Andô,et al.  On fundamental properties of a Banach space with a cone , 1962 .

[25]  G. Debreu NEW CONCEPTS AND TECHNIQUES FOR EQUILIBRIUM ANALYSIS , 1962 .

[26]  William R. Catton,et al.  A Theory of Value , 1959 .

[27]  Charalambos D. Aliprantis,et al.  Positive Operators , 2006 .

[28]  Stephen A. Clark A tangent cone analysis of smooth preferences on a topological vector space , 2004 .

[29]  Charalambos D. Aliprantis,et al.  An invitation to operator theory , 2002 .

[30]  Nizar Allouch,et al.  Edgeworth and Walras equilibria of an arbitrage-free exchange economy , 2000 .

[31]  M. Rajeev Theory of incomplete markets , 1998 .

[32]  Konrad Podczeck,et al.  Equilibria in vector lattices without ordered preferences or uniform properness , 1996 .

[33]  Kim C. Border,et al.  Infinite Dimensional Analysis: A Hitchhiker’s Guide , 1994 .

[34]  Scott F. Richard,et al.  A new approach to production equilibria in vector lattices , 1989 .

[35]  Kerry Back,et al.  Structure of consumption sets and existence of equilibria in infinite-dimensional spaces☆ , 1988 .

[36]  Nicholas C. Yannelis,et al.  EQUILIBRIA IN BANACH LATTICES WITHOUT ORDERED PREFERENCES , 1986 .

[37]  L. Jones Special Problems Arising in the Study of Economies with Infinitely Many Commodities , 1986 .

[38]  William R. Zame,et al.  Proper preferences and quasi-concave utility functions , 1986 .

[39]  Charalambos D. Aliprantis,et al.  Locally solid Riesz spaces , 1978 .

[40]  A. Peressini Ordered topological vector spaces , 1967 .