Linear and non-linear price decentralization
暂无分享,去创建一个
Charalambos D. Aliprantis | Rabee Tourky | Monique Florenzano | R. Tourky | M. Florenzano | C. Aliprantis
[1] Charalambos D. Aliprantis,et al. Non-marketed options, non-existence of equilibria, and non-linear prices , 2004, J. Econ. Theory.
[2] Charalambos D. Aliprantis,et al. Locally Solid Riesz Spaces with Applications to Economics , 2003 .
[3] Monique Florenzano,et al. General Equilibrium Analysis: Existence and Optimality Properties of Equilibria , 2003 .
[4] R. Tourky,et al. MARKETS THAT DON'T REPLICATE ANY OPTION , 2002 .
[5] Gylfi Zoega,et al. The Modigliani 'Puzzle' , 2002 .
[6] R. Tourky,et al. The super order dual of an ordered vector space and the Riesz–Kantorovich formula , 2001 .
[7] V. Marakulin. Equilibria in infinite dimensional commodity spaces revisited , 2001 .
[8] Nicholas C. Yannelis,et al. A Theory of Value with Non-linear Prices: Equilibrium Analysis beyond Vector Lattices , 2001, J. Econ. Theory.
[9] M. Florenzano,et al. Production equilibria in vector lattices , 2001 .
[10] Nicholas C. Yannelis,et al. Cone Conditions in General Equilibrium Theory , 2000, J. Econ. Theory.
[11] Rabee Tourky,et al. The limit theorem on the core of a production economy in vector lattices with unordered preferences , 1999 .
[12] Monique Florenzano,et al. Decentralizing Edgeworth equilibria in economies with many commodities , 1999 .
[13] C. Aliprantis,et al. Portfolio dominance and optimality in infinite security markets , 1998 .
[14] Rabee Tourky,et al. A New Approach to the Limit Theorem on the Core of an Economy in Vector Lattices , 1998 .
[15] Cuong Le Van,et al. Complete Characterization of Yannelis-Zame and Chichilnisky-Kalman-Mas-Colell Properness Conditions on Preferences for Separable Concave Functions Defined in L[superscript p subscript +] and L[superscript p] , 1996 .
[16] Charalambos D. Aliprantis,et al. When is the core equivalence theorem valid? , 1991 .
[17] Andreu Mas-Colell,et al. A New Approach to the Existence of Equilibria in Vector Lattices , 1991 .
[18] Monique Florenzano,et al. Edgeworth equilibria, fuzzy core, and equilibria of a production economy without ordered preferences , 1990 .
[19] Paulo Klinger Monteiro,et al. Equilibrium without uniform conditions , 1989 .
[20] Charalambos D. Aliprantis,et al. Edgeworth equilibria in production economies , 1987 .
[21] William R. Zame,et al. Competitive Equilibria in Production Economies with an Infinite-Dimensional Commodity Space , 1987 .
[22] Andreu Mas-Colell,et al. The Price Equilibrium Existence Problem in Topological Vector Lattice s , 1986 .
[23] S. Ross. Options and Efficiency , 1976 .
[24] T. Andô,et al. On fundamental properties of a Banach space with a cone , 1962 .
[25] G. Debreu. NEW CONCEPTS AND TECHNIQUES FOR EQUILIBRIUM ANALYSIS , 1962 .
[26] William R. Catton,et al. A Theory of Value , 1959 .
[27] Charalambos D. Aliprantis,et al. Positive Operators , 2006 .
[28] Stephen A. Clark. A tangent cone analysis of smooth preferences on a topological vector space , 2004 .
[29] Charalambos D. Aliprantis,et al. An invitation to operator theory , 2002 .
[30] Nizar Allouch,et al. Edgeworth and Walras equilibria of an arbitrage-free exchange economy , 2000 .
[31] M. Rajeev. Theory of incomplete markets , 1998 .
[32] Konrad Podczeck,et al. Equilibria in vector lattices without ordered preferences or uniform properness , 1996 .
[33] Kim C. Border,et al. Infinite Dimensional Analysis: A Hitchhiker’s Guide , 1994 .
[34] Scott F. Richard,et al. A new approach to production equilibria in vector lattices , 1989 .
[35] Kerry Back,et al. Structure of consumption sets and existence of equilibria in infinite-dimensional spaces☆ , 1988 .
[36] Nicholas C. Yannelis,et al. EQUILIBRIA IN BANACH LATTICES WITHOUT ORDERED PREFERENCES , 1986 .
[37] L. Jones. Special Problems Arising in the Study of Economies with Infinitely Many Commodities , 1986 .
[38] William R. Zame,et al. Proper preferences and quasi-concave utility functions , 1986 .
[39] Charalambos D. Aliprantis,et al. Locally solid Riesz spaces , 1978 .
[40] A. Peressini. Ordered topological vector spaces , 1967 .