Du Pourquoi au Comment: la Théorie de la Démonstration de 1950 à nos Jours

[1]  G. Burali-Forti Sulle classi ben ordinate , 1897 .

[2]  Georg Kreisel,et al.  A survey of proof theory , 1968, Journal of Symbolic Logic.

[3]  Per Martin-Löf,et al.  Intuitionistic type theory , 1984, Studies in proof theory.

[4]  Dana S. Scott,et al.  Data Types as Lattices , 1976, SIAM J. Comput..

[5]  G. Gentzen Die Widerspruchsfreiheit der reinen Zahlentheorie , 1936 .

[6]  Georg Kreisel,et al.  Reflection Principles and Their Use for Establishing the Complexity of Axiomatic Systems , 1968 .

[7]  J. Girard Proof Theory and Logical Complexity , 1989 .

[8]  Jean-Yves Girard,et al.  Π12-logic, Part 1: Dilators , 1981 .

[9]  Jean H. Gallier,et al.  What's So Special About Kruskal's Theorem and the Ordinal Gamma0? A Survey of Some Results in Proof Theory , 1991, Ann. Pure Appl. Log..

[10]  Gaisi Takeuti,et al.  Consistency Proofs of Subsystems of Classical Analysis , 1967 .

[11]  D. Hilbert Über das Unendliche , 1926 .

[12]  D. van Dalen,et al.  The War of the frogs and the mice, or the crisis of themathematische annalen , 1990 .

[13]  S. Feferman A Language and Axioms for Explicit Mathematics , 1975 .

[14]  Jane Bridge,et al.  A simplification of the Bachmann method for generating large countable ordinals , 1975, Journal of Symbolic Logic.

[15]  G. Gentzen Untersuchungen über das logische Schließen. I , 1935 .

[16]  W. Buchholz Iterated Inductive Definitions and Subsystems of Analysis: Recent Proof-theoretical Studies , 1981 .

[17]  C. Burali-Forti Una questione sui numeri transfiniti , 1897 .

[18]  Henk Barendregt,et al.  The Lambda Calculus: Its Syntax and Semantics , 1985 .

[19]  Thierry Coquand,et al.  Constructions: A Higher Order Proof System for Mechanizing Mathematics , 1985, European Conference on Computer Algebra.

[20]  Jean-Louis Krivine,et al.  Classical Logic, Storage Operators and Second-Order lambda-Calculus , 1994, Ann. Pure Appl. Log..

[21]  R. Peter,et al.  Gentzen Gerhard. Neue Fassung des Widerspruchsfreiheitsbeweises für die reine Zahlentheorie. Forschungen zur Logik und zur Grundlegung der exakten Wissenschaften, neue Folge, Heft 4, S. 19–44. S. Hirzel, Leipzig 1938. , 1939, Journal of Symbolic Logic.

[22]  Georg Kreisel,et al.  On the interpretation of non-finitist proofs—Part I , 1951, Journal of Symbolic Logic.