Du Pourquoi au Comment: la Théorie de la Démonstration de 1950 à nos Jours
暂无分享,去创建一个
[1] G. Burali-Forti. Sulle classi ben ordinate , 1897 .
[2] Georg Kreisel,et al. A survey of proof theory , 1968, Journal of Symbolic Logic.
[3] Per Martin-Löf,et al. Intuitionistic type theory , 1984, Studies in proof theory.
[4] Dana S. Scott,et al. Data Types as Lattices , 1976, SIAM J. Comput..
[5] G. Gentzen. Die Widerspruchsfreiheit der reinen Zahlentheorie , 1936 .
[6] Georg Kreisel,et al. Reflection Principles and Their Use for Establishing the Complexity of Axiomatic Systems , 1968 .
[7] J. Girard. Proof Theory and Logical Complexity , 1989 .
[8] Jean-Yves Girard,et al. Π12-logic, Part 1: Dilators , 1981 .
[9] Jean H. Gallier,et al. What's So Special About Kruskal's Theorem and the Ordinal Gamma0? A Survey of Some Results in Proof Theory , 1991, Ann. Pure Appl. Log..
[10] Gaisi Takeuti,et al. Consistency Proofs of Subsystems of Classical Analysis , 1967 .
[11] D. Hilbert. Über das Unendliche , 1926 .
[12] D. van Dalen,et al. The War of the frogs and the mice, or the crisis of themathematische annalen , 1990 .
[13] S. Feferman. A Language and Axioms for Explicit Mathematics , 1975 .
[14] Jane Bridge,et al. A simplification of the Bachmann method for generating large countable ordinals , 1975, Journal of Symbolic Logic.
[15] G. Gentzen. Untersuchungen über das logische Schließen. I , 1935 .
[16] W. Buchholz. Iterated Inductive Definitions and Subsystems of Analysis: Recent Proof-theoretical Studies , 1981 .
[17] C. Burali-Forti. Una questione sui numeri transfiniti , 1897 .
[18] Henk Barendregt,et al. The Lambda Calculus: Its Syntax and Semantics , 1985 .
[19] Thierry Coquand,et al. Constructions: A Higher Order Proof System for Mechanizing Mathematics , 1985, European Conference on Computer Algebra.
[20] Jean-Louis Krivine,et al. Classical Logic, Storage Operators and Second-Order lambda-Calculus , 1994, Ann. Pure Appl. Log..
[21] R. Peter,et al. Gentzen Gerhard. Neue Fassung des Widerspruchsfreiheitsbeweises für die reine Zahlentheorie. Forschungen zur Logik und zur Grundlegung der exakten Wissenschaften, neue Folge, Heft 4, S. 19–44. S. Hirzel, Leipzig 1938. , 1939, Journal of Symbolic Logic.
[22] Georg Kreisel,et al. On the interpretation of non-finitist proofs—Part I , 1951, Journal of Symbolic Logic.