A Negative Thermal Expansion Material of ZrMgMo3O12

A material with the formula ZrMgMo3O12 having negative thermal expansion is presented and characterized. It is shown that ZrMgMo3O12 crystallizes in an orthorhombic symmetry with space group Pnma(62) or Pna21(33) and exhibits negative thermal expansion in a large temperature range (αl = −3.8 × 10−6 K−1 from 300K to 1000K by x-ray diffraction and αl = −3.73 × 10−6 K−1 from 295K to 775K by dilatometer). ZrMgMo3O12 remains the orthorhombic structure without phase transition or decomposition at least from 123K to 1200K and is not hygroscopic. These properties make it an excellent material with negative thermal expansion for a variety of applications.

[1]  Qiang Sun,et al.  Negative thermal expansion correlated with polyhedral movements and distortions in orthorhombic Y2Mo3O12 , 2013 .

[2]  J. Deng,et al.  Unusual transformation from strong negative to positive thermal expansion in PbTiO3-BiFeO3 perovskite. , 2013, Physical review letters.

[3]  Zhongbo Hu,et al.  Thermal expansion properties of Lu2?x FexMo3O12 , 2012 .

[4]  Wenbo Song,et al.  The phase transition, hygroscopicity, and thermal expansion properties of Yb2−xAlxMo3O12 , 2012 .

[5]  E. Liang,et al.  Structures, Phase Transition, and Crystal Water of Fe2–xYxMo3O12 , 2011 .

[6]  Y. Zenitani,et al.  High Ion Conductivity in MgHf(WO4)3 Solids with Ordered Structure: 1-D Alignments of Mg2+ and Hf4+ Ions , 2011 .

[7]  E. Liang Negative Thermal Expansion Materials and Their Applications: A Survey of Recent Patents , 2010 .

[8]  Li Junqin,et al.  Negative thermal expansion of Sc 2- x Ga x W 3 O 12 solid solution , 2010 .

[9]  J. Deng,et al.  Structure and negative thermal expansion of Pb1 −xBixTiO3 , 2008 .

[10]  F. Ferreira,et al.  Low positive thermal expansion in HfMgMo3O12 , 2008 .

[11]  F. Ferreira,et al.  Thermal expansion of Cr2xFe2−2xMo3O12, Al2xFe2−2xMo3O12 and Al2xCr2−2xMo3O12 solid solutions , 2008 .

[12]  A. Gindhart,et al.  Synthesis of MgHf(WO4)3 and MgZr(WO4)3 using a non-hydrolytic sol–gel method , 2008 .

[13]  Junping Wang,et al.  Effect of Water Species on the Phonon Modes in Orthorhombic Y2(MoO4)3 Revealed by Raman Spectroscopy , 2008 .

[14]  M. Calleja,et al.  Colossal Positive and Negative Thermal Expansion in the Framework Material Ag3[Co(CN)6] , 2008, Science.

[15]  M. Green,et al.  Polymorphism in the negative thermal expansion material magnesium hafnium tungstate , 2008 .

[16]  T. Varga,et al.  Thermochemistry of A_2M_3O_12 negative thermal expansion materials , 2007 .

[17]  T. Varga,et al.  Neutron powder diffraction study of the orthorhombic to monoclinic transition in Sc2W3O12 on compression , 2006 .

[18]  A. Omote,et al.  Zero Thermal Expansion in (Al2x(HfMg)1−x)(WO4)3 , 2006 .

[19]  F. Rizzo,et al.  Negative thermal expansion in Y2Mo3O12 , 2005 .

[20]  T. Varga,et al.  In situ high-pressure synchrotron x-ray diffraction study of Sc 2 W 3 O 12 at up to 10 GPa , 2005 .

[21]  A. Umarji,et al.  Role of crystal structure on the thermal expansion of Ln2W3O12 (Ln = La, Nd, Dy, Y, Er and Yb) , 2004 .

[22]  A. Omote,et al.  Negative Thermal Expansion in (HfMg)(WO4)3 , 2004 .

[23]  A. G. S. Filho,et al.  High-pressure Raman study of Al2(WO4)3 , 2004 .

[24]  A. G. S. Filho,et al.  Pressure-induced structural transformations in the molybdate Sc 2 ( MoO 4 ) 3 , 2004 .

[25]  A. K. Tyagi,et al.  Phase transition and negative thermal expansion in A2(MoO4)3 system (A=Fe3+, Cr3+ and Al3+) , 2002 .

[26]  T. Vogt,et al.  Structure of ZrV2O7from −263 to 470°C , 1997 .

[27]  Z. Hu,et al.  Compressibility, Phase Transitions, and Oxygen Migration in Zirconium Tungstate, ZrW2O8 , 1997, Science.

[28]  John S. O. Evans,et al.  Negative Thermal Expansion from 0.3 to 1050 Kelvin in ZrW2O8 , 1996, Science.