Crystal structures of the Jak2 pseudokinase domain and the pathogenic mutant V617F

The protein tyrosine kinase JAK2 mediates signaling through numerous cytokine receptors. JAK2 possesses a pseudokinase domain (JH2) and a tyrosine kinase domain (JH1). Through unknown mechanisms, JH2 regulates the catalytic activity of JH1, and hyperactivating mutations in the JH2 region of human JAK2 cause myeloproliferative neoplasms (MPNs). We showed previously that JAK2 JH2 is, in fact, catalytically active. Here we present crystal structures of human JAK2 JH2, including both wild type and the most prevalent MPN mutant, V617F. The structures reveal that JH2 adopts the fold of a prototypical protein kinase but binds Mg-ATP noncanonically. The structural and biochemical data indicate that the V617F mutation rigidifies α-helix C in the N lobe of JH2, facilitating trans-phosphorylation of JH1. The crystal structures of JH2 afford new opportunities for the design of novel JAK2 therapeutics targeting MPNs.

[1]  Susan S. Taylor,et al.  2.2 A refined crystal structure of the catalytic subunit of cAMP-dependent protein kinase complexed with MnATP and a peptide inhibitor. , 1993, Acta crystallographica. Section D, Biological crystallography.

[2]  T. Boggon,et al.  Crystal structure of the Jak3 kinase domain in complex with a staurosporine analog. , 2005, Blood.

[3]  Jay Painter,et al.  Electronic Reprint Biological Crystallography Optimal Description of a Protein Structure in Terms of Multiple Groups Undergoing Tls Motion Biological Crystallography Optimal Description of a Protein Structure in Terms of Multiple Groups Undergoing Tls Motion , 2005 .

[4]  J. Rossjohn,et al.  The structural basis of Janus kinase 2 inhibition by a potent and specific pan-Janus kinase inhibitor. , 2006, Blood.

[5]  V. Hornak,et al.  Comparison of multiple Amber force fields and development of improved protein backbone parameters , 2006, Proteins.

[6]  John Kuriyan,et al.  Structural analysis of the catalytically inactive kinase domain of the human EGF receptor 3 , 2009, Proceedings of the National Academy of Sciences.

[7]  S. Hubbard Crystal structure of the activated insulin receptor tyrosine kinase in complex with peptide substrate and ATP analog , 1997, The EMBO journal.

[8]  Doron Lipson,et al.  Identification of new ALK and RET gene fusions from colorectal and lung cancer biopsies , 2012, Nature Medicine.

[9]  P. Campbell,et al.  Acquired mutation of the tyrosine kinase JAK2 in human myeloproliferative disorders , 2005, The Lancet.

[10]  M. G. Myers,et al.  Phosphorylation of Jak2 on Ser523 InhibitsJak2-Dependent Leptin ReceptorSignaling , 2006, Molecular and Cellular Biology.

[11]  H. Steen,et al.  Autophosphorylation of JAK2 on Tyrosines 221 and 570 Regulates Its Activity , 2004, Molecular and Cellular Biology.

[12]  A. Vagin,et al.  MOLREP: an Automated Program for Molecular Replacement , 1997 .

[13]  W. V. van Gunsteren,et al.  A fast SHAKE algorithm to solve distance constraint equations for small molecules in molecular dynamics simulations , 2001 .

[14]  I. Behrmann,et al.  Perspectives for the use of structural information and chemical genetics to develop inhibitors of Janus kinases , 2010, Journal of cellular and molecular medicine.

[15]  R. Radhakrishnan,et al.  ErbB3/HER3 intracellular domain is competent to bind ATP and catalyze autophosphorylation , 2010, Proceedings of the National Academy of Sciences.

[16]  Stefan N Constantinescu,et al.  A unique clonal JAK2 mutation leading to constitutive signalling causes polycythaemia vera. , 2005, Nature.

[17]  W. Vainchenker,et al.  New mutations and pathogenesis of myeloproliferative neoplasms. , 2011, Blood.

[18]  J. O’Shea,et al.  Janus kinases in immune cell signaling , 2009, Immunological reviews.

[19]  G. Murshudov,et al.  Refinement of macromolecular structures by the maximum-likelihood method. , 1997, Acta crystallographica. Section D, Biological crystallography.

[20]  L. Notarangelo,et al.  Complex Effects of Naturally Occurring Mutations in the JAK3 Pseudokinase Domain: Evidence for Interactions between the Kinase and Pseudokinase Domains , 2000, Molecular and Cellular Biology.

[21]  W. Lysenko Equilibrium phase-space distributions and space charge limits in linacs , 1977 .

[22]  James R Kiefer,et al.  Structural and thermodynamic characterization of the TYK2 and JAK3 kinase domains in complex with CP-690550 and CMP-6. , 2010, Journal of molecular biology.

[23]  W. L. Jorgensen,et al.  Comparison of simple potential functions for simulating liquid water , 1983 .

[24]  W. Kabsch,et al.  Dictionary of protein secondary structure: Pattern recognition of hydrogen‐bonded and geometrical features , 1983, Biopolymers.

[25]  K. Liedl,et al.  Prediction of the structure of human Janus kinase 2 (JAK2) comprising the two carboxy-terminal domains reveals a mechanism for autoregulation. , 2001, Protein engineering.

[26]  J. Adams,et al.  Insights into nucleotide binding in protein kinase A using fluorescent adenosine derivatives , 2000, Protein science : a publication of the Protein Society.

[27]  O. Silvennoinen,et al.  Regulation of the Jak2 Tyrosine Kinase by Its Pseudokinase Domain , 2000, Molecular and Cellular Biology.

[28]  S. Hubbard,et al.  The pseudokinase domain of JAK2 is a dual-specificity protein kinase that negatively regulates cytokine signaling , 2011, Nature Structural &Molecular Biology.

[29]  O. Silvennoinen,et al.  The Pseudokinase Domain Is Required for Suppression of Basal Activity of Jak2 and Jak3 Tyrosine Kinases and for Cytokine-inducible Activation of Signal Transduction* , 2002, The Journal of Biological Chemistry.

[30]  Kevin Cowtan,et al.  research papers Acta Crystallographica Section D Biological , 2005 .

[31]  J. D. Gezelter,et al.  Is the Ewald summation still necessary? Pairwise alternatives to the accepted standard for long-range electrostatics. , 2006, The Journal of chemical physics.

[32]  A. Magis,et al.  The constitutive activation of Jak2-V617F is mediated by a π stacking mechanism involving phenylalanines 595 and 617. , 2010, Biochemistry.

[33]  Michael P Eastwood,et al.  A common, avoidable source of error in molecular dynamics integrators. , 2007, The Journal of chemical physics.

[34]  I. Wilson,et al.  Crystallographic evidence for preformed dimers of erythropoietin receptor before ligand activation. , 1999, Science.

[35]  R. Dror,et al.  Improved side-chain torsion potentials for the Amber ff99SB protein force field , 2010, Proteins.

[36]  Z. Otwinowski,et al.  Processing of X-ray diffraction data collected in oscillation mode. , 1997, Methods in enzymology.

[37]  A. Stensballe,et al.  Phosphorylation of JAK2 at Serine 523: a Negative Regulator of JAK2 That Is Stimulated by GrowthHormone and Epidermal Growth Factor , 2006, Molecular and Cellular Biology.

[38]  Mario Cazzola,et al.  A gain-of-function mutation of JAK2 in myeloproliferative disorders. , 2005, The New England journal of medicine.

[39]  A. Tefferi JAK inhibitors for myeloproliferative neoplasms: clarifying facts from myths. , 2012, Blood.

[40]  W. Leonard,et al.  Mutation of Jak3 in a Patient with SCID: Essential Role of Jak3 in Lymphoid Development , 1995, Science.

[41]  N. K. Williams,et al.  Dissecting specificity in the Janus kinases: the structures of JAK-specific inhibitors complexed to the JAK1 and JAK2 protein tyrosine kinase domains. , 2009, Journal of molecular biology.

[42]  Sandra A. Moore,et al.  Activating mutation in the tyrosine kinase JAK2 in polycythemia vera, essential thrombocythemia, and myeloid metaplasia with myelofibrosis. , 2005, Cancer cell.

[43]  Nguyen-Huu Xuong,et al.  Crystal structure of the catalytic subunit of cAMP-dependent protein kinase complexed with magnesium-ATP and peptide inhibitor , 1993 .

[44]  Stefan N. Constantinescu,et al.  JAK2 V617F Constitutive Activation Requires JH2 Residue F595: A Pseudokinase Domain Target for Specific Inhibitors , 2010, PloS one.

[45]  M. Kyba,et al.  A JAK2 Interdomain Linker Relays Epo Receptor Engagement Signals to Kinase Activation* , 2009, The Journal of Biological Chemistry.

[46]  J. Darnell,et al.  Signalling: STATs: transcriptional control and biological impact , 2002, Nature Reviews Molecular Cell Biology.

[47]  J. P. Grossman,et al.  Millisecond-scale molecular dynamics simulations on Anton , 2009, Proceedings of the Conference on High Performance Computing Networking, Storage and Analysis.

[48]  Hoover,et al.  Canonical dynamics: Equilibrium phase-space distributions. , 1985, Physical review. A, General physics.

[49]  M. G. Myers,et al.  Tyrosine Phosphorylation of Jak2 in the JH2 Domain Inhibits Cytokine Signaling , 2004, Molecular and Cellular Biology.