Tight tail probability bounds for distribution-free decision making

Chebyshev's inequality provides an upper bound on the tail probability of a random variable based on its mean and variance. While tight, the inequality has been criticized for only being attained by pathological distributions that abuse the unboundedness of the underlying support and are not considered realistic in many applications. We provide alternative tight lower and upper bounds on the tail probability given a bounded support, mean and mean absolute deviation of the random variable. We obtain these bounds as exact solutions to semi-infinite linear programs. We leverage the bounds for distribution-free analysis of the newsvendor model, monopolistic pricing, and stop-loss reinsurance. We also exploit the bounds for safe approximations of sums of correlated random variables, and to find convex reformulations of single and joint ambiguous chance constraints that are ubiquitous in distributionally robust optimization.

[1]  Ioana Popescu,et al.  Optimal Inequalities in Probability Theory: A Convex Optimization Approach , 2005, SIAM J. Optim..

[2]  Samuel H. Cox Bounds on Expected Values of Insurance Payments and Option Prices , 1990 .

[3]  Aharon Ben-Tal,et al.  Approximation of expected returns and optimal decisions under uncertainty using mean and mean absolute deviation , 1985, Z. Oper. Research.

[4]  Karthik Natarajan,et al.  A MEAN–VARIANCE BOUND FOR A THREE-PIECE LINEAR FUNCTION , 2007, Probability in the Engineering and Informational Sciences.

[5]  Min-Chiang Wang,et al.  Expected Value of Distribution Information for the Newsvendor Problem , 2006, Oper. Res..

[6]  A. D. Schepper,et al.  General restrictions on tail probabilities , 1995 .

[7]  Jan Dhaene,et al.  Modern Actuarial Risk Theory: Using R , 2008 .

[8]  Bogdan Grechuk,et al.  CHEBYSHEV INEQUALITIES WITH LAW-INVARIANT DEVIATION MEASURES , 2009, Probability in the Engineering and Informational Sciences.

[9]  Paul J. Goulart,et al.  Fréchet inequalities via convex optimization , 2016 .

[10]  Melvyn Sim,et al.  Asymmetry and Ambiguity in Newsvendor Models , 2017, Manag. Sci..

[11]  Daniel Kuhn,et al.  Generalized Gauss inequalities via semidefinite programming , 2015, Mathematical Programming.

[12]  Robust Reserve Pricing in Auctions Under Mean Constraints , 2019, SSRN Electronic Journal.

[13]  Marc Goovaerts,et al.  Upper bounds on stop-loss premiums in case of known moments up to the fourth order☆ , 1986 .

[14]  Fariborz Maseeh,et al.  Some New Applications of P-P Plots , 2018 .

[15]  Shabbir Ahmed,et al.  On Deterministic Reformulations of Distributionally Robust Joint Chance Constrained Optimization Problems , 2018, SIAM J. Optim..

[16]  Yao Zhao,et al.  A Multiproduct Risk-Averse Newsvendor with Law-Invariant Coherent Measures of Risk , 2011, Oper. Res..

[17]  W. Rogosinski Moments of non-negative mass , 1958, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[18]  Ufuk Topcu,et al.  Convex Optimal Uncertainty Quantification , 2013, SIAM J. Optim..

[19]  Napat Rujeerapaiboon,et al.  Chebyshev Inequalities for Products of Random Variables , 2016, Math. Oper. Res..

[20]  Roger B. Myerson,et al.  Optimal Auction Design , 1981, Math. Oper. Res..

[21]  Paul Glasserman,et al.  Importance Sampling for Portfolio Credit Risk , 2005, Manag. Sci..

[22]  Karthik Natarajan,et al.  On the Heavy-Tail Behavior of the Distributionally Robust Newsvendor , 2018, Oper. Res..

[23]  Ali Ajdari,et al.  Adjustable robust treatment-length optimization in radiation therapy , 2019, Optimization and Engineering.

[24]  Donglei Du,et al.  Technical Note - A Risk- and Ambiguity-Averse Extension of the Max-Min Newsvendor Order Formula , 2014, Oper. Res..

[25]  Daniel Kuhn,et al.  Ambiguous Joint Chance Constraints Under Mean and Dispersion Information , 2017, Oper. Res..

[26]  Cees Dert,et al.  Optimal Guaranteed Return Portfolios and the Casino Effect , 2000, Oper. Res..

[27]  Karthik Natarajan,et al.  On the Heavy-Tail Behavior of the Distributionally Robust Newsvendor , 2021, Oper. Res..

[28]  K. Isii On sharpness of tchebycheff-type inequalities , 1962 .

[29]  Alexander Shapiro,et al.  Distributionally robust multistage inventory models with moment constraints , 2013 .

[30]  Georgia Perakis,et al.  Regret in the Newsvendor Model with Partial Information , 2008, Oper. Res..

[31]  Zhe George Zhang,et al.  Technical Note - A Risk-Averse Newsvendor Model Under the CVaR Criterion , 2009, Oper. Res..

[32]  Humberto Moreira,et al.  Optimal selling mechanisms under moment conditions , 2018, J. Econ. Theory.

[33]  Shie Mannor,et al.  A distributional interpretation of robust optimization , 2010, 2010 48th Annual Allerton Conference on Communication, Control, and Computing (Allerton).

[34]  Feller William,et al.  An Introduction To Probability Theory And Its Applications , 1950 .

[35]  Marc Goovaerts,et al.  Analytical best upper bounds on stop-loss premiums , 1982 .

[36]  D. Bertsimas,et al.  Probabilistic Guarantees in Robust Optimization , 2021, SIAM Journal on Optimization.

[37]  M. Williams,et al.  Basic clinical radiobiology , 1994, British Journal of Cancer.

[38]  Gabriel Carroll,et al.  Robustness in Mechanism Design and Contracting , 2019, Annual Review of Economics.

[39]  Matthias Messner,et al.  Selling to the Mean , 2015, SSRN Electronic Journal.

[40]  Kai Lai Chung,et al.  A Course in Probability Theory , 1949 .

[41]  K. F. Gauss,et al.  Theoria combinationis observationum erroribus minimis obnoxiae , 1823 .

[42]  Søren Asmussen,et al.  Ruin probabilities , 2001, Advanced series on statistical science and applied probability.

[43]  Alexander Shapiro,et al.  Lectures on Stochastic Programming: Modeling and Theory , 2009 .

[44]  Herbert E. Scarf,et al.  A Min-Max Solution of an Inventory Problem , 1957 .

[45]  Jiamin Wang,et al.  The ß-Reliable Median on a Network with Discrete Probabilistic Demand Weights , 2007, Oper. Res..

[46]  Itay Gurvich,et al.  Staffing Call Centers with Uncertain Demand Forecasts: A Chance-Constrained Optimization Approach , 2010, Manag. Sci..

[47]  B. Heijnen Best upper and lower bounds on modified stop loss premiums in case of known range, mode, mean and variance of the original risk , 1990 .

[48]  Alexander Shapiro,et al.  Convex Approximations of Chance Constrained Programs , 2006, SIAM J. Optim..

[49]  Alex Suzdaltsev Distributionally Robust Pricing in Auctions , 2018 .

[50]  R. Zeckhauser,et al.  Optimal Selling Strategies: When to Haggle, When to Hold Firm , 1983 .

[51]  T. Bortfeld,et al.  Derivation of mean dose tolerances for new fractionation schemes and treatment modalities , 2018, Physics in medicine and biology.

[52]  Stephen P. Boyd,et al.  Generalized Chebyshev Bounds via Semidefinite Programming , 2007, SIAM Rev..

[53]  Wolfram Wiesemann,et al.  The Distributionally Robust Chance-Constrained Vehicle Routing Problem , 2020, Oper. Res..

[54]  Aharon Ben-Tal,et al.  Stochastic Programs with Incomplete Information , 1976, Oper. Res..

[55]  Bertrand Melenberg,et al.  Robust Optimization with Ambiguous Stochastic Constraints Under Mean and Dispersion Information , 2018, Oper. Res..

[56]  A. Ben-Tal,et al.  More bounds on the expectation of a convex function of a random variable , 1972, Journal of Applied Probability.

[57]  M. Bienaymé,et al.  CONSIDÉRATIONS A l’appui de la décourverte de Laplace sur la loi de probabilité dans la méthode des moindres carrés∗ , 2010 .

[58]  P. Embrechts,et al.  Quantitative Risk Management: Concepts, Techniques, and Tools , 2005 .

[59]  Linwei Xin,et al.  Time (in)consistency of multistage distributionally robust inventory models with moment constraints , 2013, Eur. J. Oper. Res..

[60]  Ioana Popescu,et al.  A Semidefinite Programming Approach to Optimal-Moment Bounds for Convex Classes of Distributions , 2005, Math. Oper. Res..

[61]  Arkadi Nemirovski,et al.  Robust solutions of Linear Programming problems contaminated with uncertain data , 2000, Math. Program..