Efficient method for calculating Raman spectra of solids with impurities and alloys and its application to two-dimensional transition metal dichalcogenides

Raman spectroscopy is a widely used, powerful, and nondestructive tool for studying the vibrational properties of bulk and low-dimensional materials. Raman spectra can be simulated using first-principles methods, but due to the high computational cost calculations are usually limited only to fairly small unit cells, which makes it difficult to carry out simulations for alloys and defects. Here, we develop an efficient method for simulating Raman spectra of alloys, benchmark it against full density-functional theory calculations, and apply it to several alloys of two-dimensional transition metal dichalcogenides. In this method, the Raman tensor for the supercell mode is constructed by summing up the Raman tensors of the pristine system weighted by the projections of the supercell vibrational modes to those of the pristine system. This approach is not limited to 2D materials and should be applicable to any crystalline solids with defects and impurities. To efficiently evaluate vibrational modes of very large supercells, we adopt mass approximation, although it is limited to chemically and structurally similar atomic substitutions. To benchmark our method, we first apply it to Mo$_x$W$_{(1-x)}$S$_2$ monolayer in the H-phase, where several experimental reports are available for comparison. Second, we consider Mo$_x$W$_{(1-x)}$Te$_2$ in the T'-phase, which has been proposed to be 2D topological insulator, but where experimental results for the monolayer alloy are still missing. We show that the projection scheme also provides a powerful tool for analyzing the origin of the alloy Raman-active modes in terms of the parent system eigenmodes. Finally, we examine the trends in characteristic Raman signatures for dilute concentrations of impurities in MoS$_2$.

[1]  Zaiyao Fei,et al.  Ferroelectric switching of a two-dimensional metal , 2018, Nature.

[2]  Jeongyong Kim,et al.  Composition-Tunable Synthesis of Large-Scale Mo1- xW xS2 Alloys with Enhanced Photoluminescence. , 2018, ACS nano.

[3]  Ronggui Yang,et al.  Anisotropic thermal transport in van der Waals layered alloys WSe2(1-x)Te2x , 2018, Applied Physics Letters.

[4]  A. Krasheninnikov,et al.  Hydrogen-assisted post-growth substitution of tellurium into molybdenum disulfide monolayers with tunable compositions , 2018, Nanotechnology.

[5]  Kevin J. Chen,et al.  In Situ Resonant Raman Spectroscopy to Monitor the Surface Functionalization of MoS2 and WSe2 for High-k Integration: A First-Principles Study. , 2018, Langmuir : the ACS journal of surfaces and colloids.

[6]  Albert V. Davydov,et al.  The structural phases and vibrational properties of Mo1−xWxTe2 alloys , 2017, 2d materials.

[7]  A. Kopytov,et al.  Unfolding phonon spectra by smearing of vibrational eigenmodes , 2017 .

[8]  Albert V. Davydov,et al.  Evolution of Raman spectra in Mo 1 − x W x Te 2 alloys , 2017 .

[9]  Kang L. Wang,et al.  Composition and temperature-dependent phase transition in miscible Mo1−xWxTe2 single crystals , 2017, Scientific Reports.

[10]  Yiming Zhu,et al.  Anisotropic Spectroscopy and Electrical Properties of 2D ReS2(1-x) Se2x Alloys with Distorted 1T Structure. , 2017, Small.

[11]  Xin Luo,et al.  Determination of Crystal Axes in Semimetallic T′‐MoTe2 by Polarized Raman Spectroscopy , 2017 .

[12]  K. Ohno,et al.  Defect-Induced Vibration Modes of Ar + -Irradiated MoS 2 , 2017 .

[13]  A. T. Johnson,et al.  Intrinsic Phonon Bands in High-Quality Monolayer T' Molybdenum Ditelluride. , 2016, ACS nano.

[14]  F. Jin,et al.  Raman scattering in the transition-metal dichalcogenides of 1 T ′ − MoT e 2 , T d − MoT e 2 , and T d − WT e 2 , 2016 .

[15]  P. Schwaller,et al.  Two-dimensional materials from high-throughput computational exfoliation of experimentally known compounds , 2016, Nature Nanotechnology.

[16]  Atsuto Seko,et al.  Mode decomposition based on crystallographic symmetry in the band-unfolding method , 2016, 1611.01299.

[17]  Albert V. Davydov,et al.  Characterization of Few-Layer 1T' MoTe2 by Polarization-Resolved Second Harmonic Generation and Raman Scattering. , 2016, ACS nano.

[18]  Pinshane Y. Huang,et al.  Engineering the Structural and Electronic Phases of MoTe2 through W Substitution. , 2016, Nano letters.

[19]  G. Flynn,et al.  Electronic band gaps and exciton binding energies in monolayer M o x W 1 − x S 2 transition metal dichalcogenide alloys probed by scanning tunneling and optical spectroscopy , 2016 .

[20]  Jun Yan,et al.  Activation of New Raman Modes by Inversion Symmetry Breaking in Type II Weyl Semimetal Candidate T'-MoTe2. , 2016, Nano letters.

[21]  Kyeongjae Cho,et al.  Charge Mediated Reversible Metal-Insulator Transition in Monolayer MoTe2 and WxMo1-xTe2 Alloy. , 2016, ACS nano.

[22]  R Saito,et al.  Raman spectroscopy of transition metal dichalcogenides , 2016, Journal of physics. Condensed matter : an Institute of Physics journal.

[23]  Ji Feng,et al.  Raman signatures of inversion symmetry breaking and structural phase transition in type-II Weyl semimetal MoTe2 , 2016, Nature Communications.

[24]  A. Davydov,et al.  Phonon Anharmonicity in Bulk T d -MoTe2. , 2016, Applied physics letters.

[25]  Ronggui Yang,et al.  Phonon transport in single-layer M o 1 − x W x S 2 alloy embedded with W S 2 nanodomains , 2016, 1605.08468.

[26]  Guowei Yang,et al.  Promoting the Performance of Layered-Material Photodetectors by Alloy Engineering. , 2016, ACS applied materials & interfaces.

[27]  A. Balan,et al.  Raman Shifts in Electron-Irradiated Monolayer MoS2. , 2016, ACS nano.

[28]  Timothy M. McCormick,et al.  Spectroscopic evidence for a type II Weyl semimetallic state in MoTe2. , 2016, Nature materials.

[29]  F. Zheng,et al.  Phonon dispersion unfolding in the presence of heavy breaking of spatial translational symmetry , 2016, 1602.06655.

[30]  E. Reed,et al.  Structural Phase Transitions by Design in Monolayer Alloys. , 2016, ACS nano.

[31]  Young In Jhon,et al.  Anomalous Raman scattering and lattice dynamics in mono- and few-layer WTe2. , 2016, Nanoscale.

[32]  A. Wysmołek,et al.  Raman scattering of few-layers MoTe2 , 2015, 1511.07184.

[33]  Su-Huai Wei,et al.  Alloy Engineering of Defect Properties in Semiconductors: Suppression of Deep Levels in Transition-Metal Dichalcogenides. , 2015, Physical review letters.

[34]  C. Felser,et al.  Prediction of Weyl semimetal in orthorhombicMoTe2 , 2015, Physical Review B.

[35]  Jiangbin Wu,et al.  Phonon and Raman Scattering of Two‐Dimensional Transition Metal Dichalcogenides from Monolayer, Multilayer to Bulk Material , 2015 .

[36]  I. Tanaka,et al.  First principles phonon calculations in materials science , 2015, 1506.08498.

[37]  C. Robert,et al.  Spin-orbit engineering in transition metal dichalcogenide alloy monolayers , 2015, Nature Communications.

[38]  Hua Xu,et al.  Growth of MoS(2(1-x))Se(2x) (x = 0.41-1.00) Monolayer Alloys with Controlled Morphology by Physical Vapor Deposition. , 2015, ACS nano.

[39]  M. Pumera,et al.  MoxW1−xS2 Solid Solutions as 3D Electrodes for Hydrogen Evolution Reaction , 2015 .

[40]  Wei Shi,et al.  Phonon and Raman scattering of two-dimensional transition metal dichalcogenides from monolayer, multilayer to bulk material. , 2015, Chemical Society reviews.

[41]  Yucheng Jiang,et al.  Raman fingerprint for semi-metal WTe2 evolving from bulk to monolayer , 2015, Scientific Reports.

[42]  D. Mukherjee,et al.  Active guests in the MoS2/MoSe2 host lattice: efficient hydrogen evolution using few-layer alloys of MoS(2(1-x))Se(2x). , 2014, Nanoscale.

[43]  J. Spanier,et al.  A comprehensive multiphonon spectral analysis in MoS2 , 2014, 1408.6748.

[44]  Jr-hau He,et al.  Controllable Synthesis of Band-Gap-Tunable and Monolayer Transition-Metal Dichalcogenide Alloys , 2014, Front. Energy Res..

[45]  Jr-hau He,et al.  Band gap-tunable molybdenum sulfide selenide monolayer alloy. , 2014, Small.

[46]  L. Fu,et al.  Quantum Spin Hall Effect and Topological Field Effect Transistor in Two-Dimensional Transition Metal Dichalcogenides , 2014, 1406.2749.

[47]  Yiming Zhu,et al.  Two-dimensional molybdenum tungsten diselenide alloys: photoluminescence, Raman scattering, and electrical transport. , 2014, ACS nano.

[48]  T. Heinz,et al.  2‐Dimensional Transition Metal Dichalcogenides with Tunable Direct Band Gaps: MoS2(1–x)Se2x Monolayers , 2014, Advanced materials.

[49]  Ping Zhang,et al.  A general group theoretical method to unfold band structures and its application , 2014, 1403.0639.

[50]  X. Duan,et al.  Growth of alloy MoS(2x)Se2(1-x) nanosheets with fully tunable chemical compositions and optical properties. , 2014, Journal of the American Chemical Society.

[51]  Yiming Zhu,et al.  Composition-dependent Raman modes of Mo(1-x)W(x)S2 monolayer alloys. , 2014, Nanoscale.

[52]  D. Chi,et al.  Vapor-phase growth and characterization of Mo(1-x)W(x)S2 (0 ≤ x ≤ 1) atomic layers on 2-inch sapphire substrates. , 2014, Nanoscale.

[53]  Sefaattin Tongay,et al.  Two-dimensional semiconductor alloys: Monolayer Mo1−xWxSe2 , 2014 .

[54]  F. Guinea,et al.  Quantum spin Hall effect in two-dimensional crystals of transition-metal dichalcogenides. , 2013, Physical review letters.

[55]  Olle Eriksson,et al.  Two-Dimensional Materials from Data Filtering and Ab Initio Calculations , 2013 .

[56]  J. Coleman,et al.  Liquid Exfoliation of Layered Materials , 2013, Science.

[57]  Dong Wang,et al.  Tunable band gap photoluminescence from atomically thin transition-metal dichalcogenide alloys. , 2013, ACS nano.

[58]  Junqiao Wu,et al.  Monolayer semiconducting transition metal dichalcogenide alloys: Stability and band bowing , 2013 .

[59]  J. Soler,et al.  Recovering hidden Bloch character: Unfolding electrons, phonons, and slabs , 2012, 1212.5702.

[60]  A. Krasheninnikov,et al.  Two-Dimensional Transition Metal Dichalcogenide Alloys: Stability and Electronic Properties. , 2012, The journal of physical chemistry letters.

[61]  L. Wirtz,et al.  Phonons in single-layer and few-layer MoS2 , 2011 .

[62]  D. Dumcenco,et al.  Raman study of 2H-Mo1−xWxS2 layered mixed crystals , 2010 .

[63]  G. Scuseria,et al.  Restoring the density-gradient expansion for exchange in solids and surfaces. , 2007, Physical review letters.

[64]  S. K. Srivastava,et al.  Studies on layer disorder, microstructural parameters and other properties of tungsten-substitued molybdenum disulfide, Mo1−xWxS2 (0≤x≤1) , 1997 .

[65]  M. Pederson,et al.  Infrared intensities and Raman-scattering activities within density-functional theory. , 1996, Physical review. B, Condensed matter.

[66]  Hafner,et al.  Ab initio molecular dynamics for liquid metals. , 1995, Physical review. B, Condensed matter.

[67]  Ferreira,et al.  Special quasirandom structures. , 1990, Physical review letters.

[68]  E. Revolinsky,et al.  Electrical Properties of the MoTe2−WTe2 and MoSe2−WSe2 Systems , 1964 .

[69]  Anlian Pan and Growth of Alloy MoS2xSe2(1—x) Nanosheets with Fully Tunable Chemical Compositions and Optical Properties. , 2014 .

[70]  Neil Genzlinger A. and Q , 2006 .

[71]  Jose Menendez,et al.  Characterization of Bulk Semiconductors Using Raman Spectroscopy , 2000 .