A guide to the BRAIN Initiative Cell Census Network data ecosystem

Characterizing cellular diversity at different levels of biological organization and across data modalities is a prerequisite to understanding the function of cell types in the brain. Classification of neurons is also essential to manipulate cell types in controlled ways and to understand their variation and vulnerability in brain disorders. The BRAIN Initiative Cell Census Network (BICCN) is an integrated network of data-generating centers, data archives, and data standards developers, with the goal of systematic multimodal brain cell type profiling and characterization. Emphasis of the BICCN is on the whole mouse brain with demonstration of prototype feasibility for human and nonhuman primate (NHP) brains. Here, we provide a guide to the cellular and spatial approaches employed by the BICCN, and to accessing and using these data and extensive resources, including the BRAIN Cell Data Center (BCDC), which serves to manage and integrate data across the ecosystem. We illustrate the power of the BICCN data ecosystem through vignettes highlighting several BICCN analysis and visualization tools. Finally, we present emerging standards that have been developed or adopted toward Findable, Accessible, Interoperable, and Reusable (FAIR) neuroscience. The combined BICCN ecosystem provides a comprehensive resource for the exploration and analysis of cell types in the brain.

Maja A. Puchades | Timothy L. Tickle | Thomas L. Athey | Brock Andrew Wester | Pamela M. Baker | Ambrose J. Carr | A. Regev | Hagen U. Tilgner | Han Liu | Quanxin Wang | Hanchuan Peng | M. Hawrylycz | Hongkui Zeng | Zizhen Yao | E. Lein | Tim Dolbeare | Hong-wei Dong | Tim P. Fliss | Lydia Ng | C. Thompson | C. Mungall | R. Scheuermann | P. Hof | G. Ascoli | Yongsoo Kim | B. Ren | J. Gillis | B. Staats | D. Haynor | N. Harris | E. Mukamel | A. Bandrowski | J. Bjaalie | Y. Halchenko | S. Ding | Joshua Orvis | H. Creasy | B. Wester | Lei Qu | Nathan Sjoquist | J. Fillion-Robin | B. Lelieveldt | Rongxin Fang | D. Osumi-Sutherland | W. J. Zheng | Sulagna Dia Ghosh | B. Dichter | R. Hertzano | D. Jarecka | Hua Xu | M. Varghese | S. Ament | Brian R. Herb | B. Aevermann | Y. Li | Y. Zhang | Katherine Baker | Florence D. D'Orazi | Fangming Xie | Cindy T. J. van Velthoven | J. Ecker | Brian Zingg | J. Cool | Houri Hintiryan | Bingxing Huo | James Gee | Changkyu Lee | Chris Mezias | Michael I. Miller | S. Tan | Tom Gillespie | Samik Banerjee | Kylee Degatano | Shengdian Jiang | F. Khajouei | Lijuan Liu | A. Ropelewski | Gregory Hood | Min Chen | K. Mathews | Yufeng Liu | O. White | Daniel Tward | Hüseyin Kir | Jeremy A. Miller | Zhixi Yun | Lauren Kruse | P. Mitra | Raymond Sanchez | David Allemang | Cody Baker | Prajal Bishwakarma | Roni Choudhury | Sam Horvath | Elizabeth A Kiernan | Anup Markuhar | J. Mathews | Michael I Miller | Shoaib Mufti | Guo-Qiang Zhang | J. Receveur | N. Gouwens | Maryann E. Martone | Tyler Mollenkopf | Patrick L Ray | Samik Banerjee | Farzaneh Khajouei | S. Mufti | David Osumi-Sutherland | Yun Renee Zhang

[1]  Hongkui Zeng,et al.  A molecularly defined and spatially resolved cell atlas of the whole mouse brain , 2023, bioRxiv.

[2]  Brian R. Long,et al.  A high-resolution transcriptomic and spatial atlas of cell types in the whole mouse brain , 2023, bioRxiv.

[3]  M. Hawrylycz,et al.  Brain Data Standards - A method for building data-driven cell-type ontologies , 2022, bioRxiv.

[4]  Carol M Hamilton,et al.  Standard metadata for 3D microscopy , 2022, Scientific data.

[5]  Hongkui Zeng What is a cell type and how to define it? , 2022, Cell.

[6]  H. Yao,et al.  Single-neuron projectome of mouse prefrontal cortex , 2022, Nature Neuroscience.

[7]  Satrajit S. Ghosh,et al.  The Neurodata Without Borders ecosystem for neurophysiological data science , 2022, bioRxiv.

[8]  Hagen U. Tilgner,et al.  Single-nuclei isoform RNA sequencing unlocks barcoded exon connectivity in frozen brain tissue , 2022, Nature Biotechnology.

[9]  Adam R Ferguson,et al.  Is Neuroscience FAIR? A Call for Collaborative Standardisation of Neuroscience Data , 2022, Neuroinformatics.

[10]  Hanchuan Peng,et al.  mBrainAligner-Web: a web server for cross-modal coherent registration of whole mouse brains , 2022, Bioinform..

[11]  Evan Z. Macosko,et al.  Comparative cellular analysis of motor cortex in human, marmoset and mouse , 2021, Nature.

[12]  Evan Z. Macosko,et al.  A transcriptomic and epigenomic cell atlas of the mouse primary motor cortex , 2021, Nature.

[13]  Hongkui Zeng,et al.  Spatially resolved cell atlas of the mouse primary motor cortex by MERFISH , 2021, Nature.

[14]  Evan Z. Macosko,et al.  Peer Review File Manuscript Title: A transcriptomic atlas of mouse cerebellar cortex reveals novel cell types Editorial Notes: Reviewer Comments & Author Rebuttals , 2020 .

[15]  Staci A. Sorensen,et al.  Morphological diversity of single neurons in molecularly defined cell types , 2021, Nature.

[16]  Julie A. Harris,et al.  Genetic dissection of the glutamatergic neuron system in cerebral cortex , 2021, Nature.

[17]  Stephan Fischer,et al.  How many markers are needed to robustly determine a cell's type? , 2021, iScience.

[18]  Stephan Fischer,et al.  Scaling up reproducible research for single-cell transcriptomics using MetaNeighbor , 2021, Nature Protocols.

[19]  Simon B. Eickhoff,et al.  DataLad: distributed system for joint management of code, data, and their relationship , 2021, J. Open Source Softw..

[20]  Nicholas N. Foster,et al.  Organization of the inputs and outputs of the mouse superior colliculus , 2021, Nature Communications.

[21]  Evan Z. Macosko,et al.  Molecular logic of cellular diversification in the mouse cerebral cortex , 2021, Nature.

[22]  G. Ming,et al.  Seq-ing out cell types across the isocortex and hippocampal formation , 2021, Cell.

[23]  Trygve E Bakken,et al.  A machine learning method for the discovery of minimum marker gene combinations for cell type identification from single-cell RNA sequencing , 2021, Genome research.

[24]  Stephan Fischer,et al.  How many markers are needed to robustly determine a cell’s type? , 2021, iScience.

[25]  Timothy A. Machado,et al.  CloudReg: automatic terabyte-scale cross-modal brain volume registration , 2021, Nature Methods.

[26]  Hanchuan Peng,et al.  Petabyte-Scale Multi-Morphometry of Single Neurons for Whole Brains , 2021, Neuroinformatics.

[27]  Philipp Berens,et al.  Phenotypic variation of transcriptomic cell types in mouse motor cortex , 2020, Nature.

[28]  Satrajit S. Ghosh,et al.  A multimodal cell census and atlas of the mammalian primary motor cortex , 2020, Nature.

[29]  Raphael Gottardo,et al.  Integrated analysis of multimodal single-cell data , 2020, Cell.

[30]  Liya Ding,et al.  Cellular anatomy of the mouse primary motor cortex , 2020, Nature.

[31]  Kyle J. Gaulton,et al.  An atlas of gene regulatory elements in adult mouse cerebrum , 2020, Nature.

[32]  Jesse R. Dixon,et al.  DNA methylation atlas of the mouse brain at single-cell resolution , 2020, Nature.

[33]  L. Ng,et al.  The Allen Mouse Brain Common Coordinate Framework: A 3D Reference Atlas , 2020, Cell.

[34]  Mohammad S. Rashid,et al.  Epigenomic diversity of cortical projection neurons in the mouse brain , 2020, Nature.

[35]  Hongkui Zeng,et al.  A taxonomy of transcriptomic cell types across the isocortex and hippocampal formation , 2020, Cell.

[36]  A. S. Booeshaghi,et al.  Isoform cell-type specificity in the mouse primary motor cortex , 2020, Nature.

[37]  Robert W. Williams,et al.  Highlights from the Era of Open Source Web-Based Tools , 2020, The Journal of Neuroscience.

[38]  Concha Bielza,et al.  A community-based transcriptomics classification and nomenclature of neocortical cell types , 2019, Nature Neuroscience.

[39]  Allan R. Jones,et al.  Conserved cell types with divergent features in human versus mouse cortex , 2019, Nature.

[40]  J. Ngai,et al.  Perspectives on defining cell types in the brain , 2019, Current Opinion in Neurobiology.

[41]  Trygve B Leergaard,et al.  Spatial registration of serial microscopic brain images to three-dimensional reference atlases with the QuickNII tool , 2019, PloS one.

[42]  Michael L. Hines,et al.  Neuron Names: A Gene- and Property-Based Name Format, With Special Reference to Cortical Neurons , 2019, Front. Neuroanat..

[43]  Shila Ghazanfar,et al.  The human body at cellular resolution: the NIH Human Biomolecular Atlas Program , 2019, Nature.

[44]  Michael N. Economo,et al.  Reconstruction of 1,000 Projection Neurons Reveals New Cell Types and Organization of Long-Range Connectivity in the Mouse Brain , 2019, Cell.

[45]  Nicholas N. Foster,et al.  Integration of gene expression and brain-wide connectivity reveals the multiscale organization of mouse hippocampal networks , 2018, Nature Neuroscience.

[46]  Z. J. Huang,et al.  Characterizing the replicability of cell types defined by single cell RNA-sequencing data using MetaNeighbor , 2018, Nature Communications.

[47]  Giorgio A. Ascoli,et al.  An open repository for single-cell reconstructions of the brain forest , 2018, Scientific Data.

[48]  Ian R. Wickersham,et al.  The BRAIN Initiative Cell Census Consortium: Lessons Learned toward Generating a Comprehensive Brain Cell Atlas , 2017, Neuron.

[49]  Fabian J Theis,et al.  The Human Cell Atlas , 2017, bioRxiv.

[50]  Alan Ruttenberg,et al.  The Cell Ontology 2016: enhanced content, modularization, and ontology interoperability , 2016, J. Biomed. Semant..

[51]  Satrajit S. Ghosh,et al.  The brain imaging data structure, a format for organizing and describing outputs of neuroimaging experiments , 2016, Scientific Data.

[52]  Giorgio A. Ascoli,et al.  Name-calling in the hippocampus (and beyond): coming to terms with neuron types and properties , 2016, Brain Informatics.

[53]  Prachi Singh,et al.  Big Genomic Data in Bioinformatics Cloud , 2016 .

[54]  Erik Schultes,et al.  The FAIR Guiding Principles for scientific data management and stewardship , 2016, Scientific Data.

[55]  Ivan Merelli,et al.  Managing, Analysing, and Integrating Big Data in Medical Bioinformatics: Open Problems and Future Perspectives , 2014, BioMed research international.

[56]  Arthur W. Toga,et al.  Neural Networks of the Mouse Neocortex , 2014, Cell.

[57]  Andy Koronios,et al.  Data, Information, Knowledge, Wisdom (DIKW): A Semiotic Theoretical and Empirical Exploration of the Hierarchy and its Quality Dimension , 2013, Australas. J. Inf. Syst..

[58]  T. Insel,et al.  The NIH BRAIN Initiative , 2013, Science.

[59]  Milan Sonka,et al.  3D Slicer as an image computing platform for the Quantitative Imaging Network. , 2012, Magnetic resonance imaging.

[60]  Johannes E. Schindelin,et al.  Fiji: an open-source platform for biological-image analysis , 2012, Nature Methods.

[61]  S. Lewis,et al.  Uberon, an integrative multi-species anatomy ontology , 2012, Genome Biology.

[62]  Tsviya Olender,et al.  GeneCards Version 3: the human gene integrator , 2010, Database J. Biol. Databases Curation.

[63]  Hanchuan Peng,et al.  V3D enables real-time 3D visualization and quantitative analysis of large-scale biological image data sets , 2010, Nature Biotechnology.

[64]  Brian B. Avants,et al.  Symmetric diffeomorphic image registration with cross-correlation: Evaluating automated labeling of elderly and neurodegenerative brain , 2008, Medical Image Anal..

[65]  W. Sweet,et al.  Diseases of the nervous system. , 1956, Annual review of medicine.

[66]  Allan R. Jones,et al.  Comprehensive cellular‐resolution atlas of the adult human brain , 2017, The Journal of comparative neurology.

[67]  Max A. Viergever,et al.  elastix: A Toolbox for Intensity-Based Medical Image Registration , 2010, IEEE Transactions on Medical Imaging.