Targeting the ACOD1-itaconate axis stabilizes atherosclerotic plaques

[1]  Yuqing Zhu,et al.  Metabolic Reprogramming via ACOD1 depletion enhances function of human induced pluripotent stem cell-derived CAR-macrophages in solid tumors , 2023, Nature communications.

[2]  T. van der Poll,et al.  Inflammatory and glycolytic programs underpin a primed blood neutrophil state in patients with pneumonia , 2023, iScience.

[3]  K. Ley,et al.  Deleting interleukin-10 from myeloid cells exacerbates atherosclerosis in Apoe−/− mice , 2022, Cellular and Molecular Life Sciences.

[4]  Kai Song,et al.  Effect of alirocumab and evolocumab on all-cause mortality and major cardiovascular events: A meta-analysis focusing on the number needed to treat , 2022, Frontiers in Cardiovascular Medicine.

[5]  G. Pasterkamp,et al.  Sterol-regulated transmembrane protein TMEM86a couples LXR signaling to regulation of lysoplasmalogens in macrophages , 2022, Journal of lipid research.

[6]  W. Wiersinga,et al.  The Platelet Lipidome Is Altered in Patients with COVID-19 and Correlates with Platelet Reactivity , 2022, Thrombosis and haemostasis.

[7]  Gang Pan,et al.  Occurrences and Functions of Ly6Chi and Ly6Clo Macrophages in Health and Disease , 2022, Frontiers in Immunology.

[8]  R. Houtkooper,et al.  Polar metabolomics in human muscle biopsies using a liquid-liquid extraction and full-scan LC-MS , 2022, STAR protocols.

[9]  Yu-zhou Gui,et al.  Foam Cells in Atherosclerosis: Novel Insights Into Its Origins, Consequences, and Molecular Mechanisms , 2022, Frontiers in Cardiovascular Medicine.

[10]  Rabina Mainali,et al.  Itaconate and Its Derivatives Repress Early Myogenesis In Vitro and In Vivo , 2022, Frontiers in Immunology.

[11]  M. Crabtree,et al.  Itaconate as an inflammatory mediator and therapeutic target in cardiovascular medicine , 2021, Biochemical Society transactions.

[12]  G. Schabbauer,et al.  Lipid Scavenging Macrophages and Inflammation. , 2021, Biochimica et biophysica acta. Molecular and cell biology of lipids.

[13]  Huiru Tang,et al.  Itaconic acid exerts anti-inflammatory and antibacterial effects via promoting pentose phosphate pathway to produce ROS , 2021, Scientific Reports.

[14]  Lina Yu,et al.  The Emerging Application of Itaconate: Promising Molecular Targets and Therapeutic Opportunities , 2021, Frontiers in Chemistry.

[15]  Arwen W. Gao,et al.  Metabolomics and lipidomics in Caenorhabditis elegans using a single-sample preparation , 2021, Disease models & mechanisms.

[16]  D. M. Simons,et al.  Comparative evaluation of itaconate and its derivatives reveals divergent inflammasome and type I interferon regulation in macrophages , 2020, Nature metabolism.

[17]  A. Nègre-Salvayre,et al.  Role of reactive oxygen species in atherosclerosis: Lessons from murine genetic models. , 2020, Free radical biology & medicine.

[18]  E. Pearce,et al.  Triacylglycerol synthesis enhances macrophage inflammatory function , 2020, Nature Communications.

[19]  L. O’Neill,et al.  Krebs Cycle Reborn in Macrophage Immunometabolism. , 2020, Annual review of immunology.

[20]  Tessa J. Barrett Macrophages in Atherosclerosis Regression , 2019, Arteriosclerosis, thrombosis, and vascular biology.

[21]  M. Garcia-Gil,et al.  Purine-Metabolising Enzymes and Apoptosis in Cancer , 2019, Cancers.

[22]  Ira Tabas,et al.  Inflammation and its resolution in atherosclerosis: mediators and therapeutic opportunities , 2019, Nature Reviews Cardiology.

[23]  M. Monami,et al.  Effects of PCSK9 inhibitors on LDL cholesterol, cardiovascular morbidity and all-cause mortality: a systematic review and meta-analysis of randomized controlled trials , 2019, Journal of Endocrinological Investigation.

[24]  P. Ridker Anticytokine Agents: Targeting Interleukin Signaling Pathways for the Treatment of Atherothrombosis , 2019, Circulation research.

[25]  Maxim N. Artyomov,et al.  Itaconate: the poster child of metabolic reprogramming in macrophage function , 2019, Nature Reviews Immunology.

[26]  R. Spang,et al.  Correcting for natural isotope abundance and tracer impurity in MS-, MS/MS- and high-resolution-multiple-tracer-data from stable isotope labeling experiments with IsoCorrectoR , 2018, Scientific Reports.

[27]  S. Ferdinandusse,et al.  Barth syndrome cells display widespread remodeling of mitochondrial complexes without affecting metabolic flux distribution. , 2018, Biochimica et biophysica acta. Molecular basis of disease.

[28]  Charlotte L. Scott,et al.  Macrophages and lipid metabolism , 2018, Cellular immunology.

[29]  S. Denis,et al.  Pyruvate dehydrogenase complex plays a central role in brown adipocyte energy expenditure and fuel utilization during short-term beta-adrenergic activation , 2018, Scientific Reports.

[30]  K. Moore,et al.  Regulation of macrophage immunometabolism in atherosclerosis , 2018, Nature Immunology.

[31]  John Szpyt,et al.  Itaconate is an anti-inflammatory metabolite that activates Nrf2 via alkylation of KEAP1 , 2018, Nature.

[32]  N. Perrimon,et al.  mTORC1 Couples Nucleotide Synthesis to Nucleotide Demand Resulting in a Targetable Metabolic Vulnerability. , 2017, Cancer cell.

[33]  L. Joosten,et al.  Monocyte and macrophage immunometabolism in atherosclerosis , 2017, Seminars in Immunopathology.

[34]  P. Libby,et al.  Antiinflammatory Therapy with Canakinumab for Atherosclerotic Disease , 2017, The New England journal of medicine.

[35]  L. O’Neill,et al.  Macrophage Immunometabolism: Where Are We (Going)? , 2017, Trends in immunology.

[36]  P. Ridker How Common Is Residual Inflammatory Risk? , 2017, Circulation research.

[37]  Hao Wu,et al.  Eating the Dead to Keep Atherosclerosis at Bay , 2017, Front. Cardiovasc. Med..

[38]  R. Xavier,et al.  Succinate Dehydrogenase Supports Metabolic Repurposing of Mitochondria to Drive Inflammatory Macrophages , 2016, Cell.

[39]  Angela C. M. Luyf,et al.  Lipidomic analysis of fibroblasts from Zellweger spectrum disorder patients identifies disease-specific phospholipid ratios[S] , 2016, Journal of Lipid Research.

[40]  Maxim N. Artyomov,et al.  Itaconate Links Inhibition of Succinate Dehydrogenase with Macrophage Metabolic Remodeling and Regulation of Inflammation. , 2016, Cell metabolism.

[41]  J. Rathmell,et al.  A guide to immunometabolism for immunologists , 2016, Nature Reviews Immunology.

[42]  Christian M. Metallo,et al.  Immunoresponsive Gene 1 and Itaconate Inhibit Succinate Dehydrogenase to Modulate Intracellular Succinate Levels* , 2016, The Journal of Biological Chemistry.

[43]  K. Bornfeldt,et al.  Macrophage Phenotype and Function in Different Stages of Atherosclerosis. , 2016, Circulation research.

[44]  K. Moore,et al.  Macrophages in atherosclerosis: a dynamic balance , 2013, Nature Reviews Immunology.

[45]  Kathryn E. Crosier,et al.  Immunoresponsive gene 1 augments bactericidal activity of macrophage-lineage cells by regulating β-oxidation-dependent mitochondrial ROS production. , 2013, Cell metabolism.

[46]  R. Balling,et al.  Immune-responsive gene 1 protein links metabolism to immunity by catalyzing itaconic acid production , 2013, Proceedings of the National Academy of Sciences.

[47]  G. Radda,et al.  The Cycling of Acetyl-Coenzyme A Through Acetylcarnitine Buffers Cardiac Substrate Supply: A Hyperpolarized 13C Magnetic Resonance Study , 2012, Circulation. Cardiovascular imaging.

[48]  K. Ley,et al.  NR4A1 (Nur77) Deletion Polarizes Macrophages Toward an Inflammatory Phenotype and Increases Atherosclerosis , 2012, Circulation research.

[49]  V. de Waard,et al.  Bone Marrow–Specific Deficiency of Nuclear Receptor Nur77 Enhances Atherosclerosis , 2012, Circulation research.

[50]  S. Xanthoulea,et al.  Myeloid IκBα Deficiency Promotes Atherogenesis by Enhancing Leukocyte Recruitment to the Plaques , 2011, PloS one.

[51]  P. Tontonoz,et al.  LXR Regulates Cholesterol Uptake Through Idol-Dependent Ubiquitination of the LDL Receptor , 2009, Science.

[52]  D. Rader,et al.  Macrophage ABCA1 and ABCG1, but not SR-BI, promote macrophage reverse cholesterol transport in vivo. , 2007, The Journal of clinical investigation.

[53]  F. Stephens,et al.  New insights concerning the role of carnitine in the regulation of fuel metabolism in skeletal muscle , 2007, The Journal of physiology.

[54]  G. Hansson Inflammation, atherosclerosis, and coronary artery disease. , 2005, The New England journal of medicine.

[55]  S. Akira,et al.  Lack of Toll-like receptor 4 or myeloid differentiation factor 88 reduces atherosclerosis and alters plaque phenotype in mice deficient in apolipoprotein E. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[56]  K. Moore,et al.  Reduced atherosclerosis in MyD88-null mice links elevated serum cholesterol levels to activation of innate immunity signaling pathways , 2004, Nature Medicine.

[57]  D. Schwartz,et al.  Toll-like receptor 4 polymorphisms and atherogenesis. , 2002, The New England journal of medicine.

[58]  D. Mangelsdorf,et al.  LXRs control lipid-inducible expression of the apolipoprotein E gene in macrophages and adipocytes. , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[59]  M. Bureau,et al.  Protective role of interleukin-10 in atherosclerosis. , 1999, Circulation research.

[60]  K. Williams,et al.  Atherosclerosis--an inflammatory disease. , 1999, The New England journal of medicine.

[61]  R. Evans,et al.  Oxidized LDL Regulates Macrophage Gene Expression through Ligand Activation of PPARγ , 1998, Cell.

[62]  R. Evans,et al.  PPARγ Promotes Monocyte/Macrophage Differentiation and Uptake of Oxidized LDL , 1998, Cell.

[63]  B. Staels,et al.  Macrophage subsets in atherosclerosis , 2015, Nature Reviews Cardiology.