Fabrication of lithium manganese oxide nanoribbons by electrospinning: A general strategy and formation mechanism

[1]  R. Xiong,et al.  Supercapacitor of TiO2 nanofibers by electrospinning and KOH treatment , 2016 .

[2]  Jing Zhao,et al.  An unconventional mechanism of hollow nanorod formation: asymmetric Cu diffusion in Au-Cu alloy nanorods during galvanic replacement reaction. , 2016, Chemical communications.

[3]  Yongchang Liu,et al.  MnFe2O4@C Nanofibers as High-Performance Anode for Sodium-Ion Batteries. , 2016, Nano letters.

[4]  S. Balakumar,et al.  Electric field induced formation of one-dimensional bismuth ferrite (BiFeO3) nanostructures in electrospinning process , 2016 .

[5]  S. Ramakrishna,et al.  Multi-functional electrospun nanofibres for advances in tissue regeneration, energy conversion & storage, and water treatment. , 2016, Chemical Society reviews.

[6]  D. Yu,et al.  Sodium storage capability of spinel Li4Mn5O12 , 2015 .

[7]  Qingfang Liu,et al.  Width-controlled M-type hexagonal strontium ferrite (SrFe12O19) nanoribbons with high saturation magnetization and superior coercivity synthesized by electrospinning , 2015, Scientific Reports.

[8]  Q. Ma,et al.  Electrospun Flexible Coaxial Nanoribbons Endowed With Tuned and Simultaneous Fluorescent Color-Electricity-Magnetism Trifunctionality , 2015, Scientific Reports.

[9]  A. Stanishevsky,et al.  Ribbon-like and spontaneously folded structures of tungsten oxide nanofibers fabricated via electrospinning , 2015 .

[10]  Yaomin Li,et al.  Spinel LiMn2O4 nanoparticles dispersed on nitrogen-doped reduced graphene oxide nanosheets as an efficient electrocatalyst for aluminium-air battery , 2015 .

[11]  Ki Tae Nam,et al.  Mn5O8 Nanoparticles as Efficient Water Oxidation Catalysts at Neutral pH , 2015 .

[12]  Lin Xu,et al.  General synthesis of complex nanotubes by gradient electrospinning and controlled pyrolysis , 2015, Nature Communications.

[13]  Xingfu Song,et al.  Lithium ion adsorption–desorption properties on spinel Li4Mn5O12 and pH-dependent ion-exchange model , 2015 .

[14]  S. Ramakrishna,et al.  Fabrication of spinel one-dimensional architectures by single-spinneret electrospinning for energy storage applications. , 2015, ACS nano.

[15]  Hongwei Zhou,et al.  Preparation and Characterization of Ultralong Spinel Lithium Manganese Oxide Nanofiber Cathode via Electrospinning Method , 2015 .

[16]  Yanjie Hu,et al.  Hierarchical porous Li4Mn5O12 nano/micro structure as superior cathode materials for Li-ion batteries , 2014 .

[17]  Wei Yan,et al.  Fabrication and formation mechanism of Mn2O3 hollow nanofibers by single-spinneret electrospinning , 2014 .

[18]  Wei Yan,et al.  Fabrication and characterization of NiTiO3 nanofibers by sol–gel assisted electrospinning , 2014, Journal of Sol-Gel Science and Technology.

[19]  Shaohua Shen,et al.  One-dimensional CdS/ZnO core/shell nanofibers via single-spinneret electrospinning: tunable morphology and efficient photocatalytic hydrogen production. , 2013, Nanoscale.

[20]  H. Bai,et al.  Novel-structured electrospun TiO2/CuO composite nanofibers for high efficient photocatalytic cogeneration of clean water and energy from dye wastewater. , 2013, Water research.

[21]  S. Ramakrishna,et al.  Synthesis of porous LiMn2O4 hollow nanofibers by electrospinning with extraordinary lithium storage properties. , 2013, Chemical communications.

[22]  D. Nihtianova,et al.  Electrochemical intercalation of Li+ into nanodomain Li4Mn5O12 , 2013 .

[23]  Zhien Lin,et al.  Li4Mn5O12 prepared using l-lysine as additive and its electrochemical performance , 2013, Ionics.

[24]  W. Nowicki,et al.  Unusual Compressional Behavior of Lithium–Manganese Oxides: A Case Study of Li4Mn5O12 , 2012 .

[25]  Q. Xue,et al.  Magnetic and electrochemical properties of CuFe2O4 hollow fibers fabricated by simple electrospinning and direct annealing , 2012 .

[26]  H. Fan,et al.  Branched nanowires: Synthesis and energy applications , 2012 .

[27]  Yunhui Huang,et al.  Electrospun porous ZnCo2O4 nanotubes as a high-performance anode material for lithium-ion batteries , 2012 .

[28]  Yongcai Qiu,et al.  Secondary branching and nitrogen doping of ZnO nanotetrapods: building a highly active network for photoelectrochemical water splitting. , 2012, Nano letters.

[29]  H. Duan,et al.  Temperature effect on electrospinning of nanobelts: the case of hafnium oxide , 2011, Nanotechnology.

[30]  K. Edström,et al.  3D lithium ion batteries{from fundamentals to fabrication , 2011 .

[31]  M. Hochella,et al.  Use of XPS to identify the oxidation state of Mn in solid surfaces of filtration media oxide samples from drinking water treatment plants. , 2010, Environmental science & technology.

[32]  Chang-Soo Jin,et al.  Synthesis of Li4Mn5O12 and its application to the non-aqueous hybrid capacitor , 2010 .

[33]  K. Zaghib,et al.  Heavy-Fermion Behavior and Electrochemistry of Li1.27Mn1.73O4 , 2009 .

[34]  X. Jiao,et al.  Facile preparation and electrochemical properties of cubic-phase Li4Mn5O12 nanowires. , 2007, Chemical communications.

[35]  Hao Wang,et al.  Low temperature synthesis of nanocrystalline Li4Mn5O12 by a hydrothermal method , 2002 .

[36]  Zhong Lin Wang,et al.  Nanobelts of Semiconducting Oxides , 2001, Science.

[37]  A. D. Kock,et al.  Spinel Electrodes from the Li‐Mn‐O System for Rechargeable Lithium Battery Applications , 1992 .

[38]  S. Iijima Helical microtubules of graphitic carbon , 1991, Nature.

[39]  Ying Wang,et al.  Ni and Fe Dual-Doped Li4Mn5O12 Spinels as Cathode Materials for High-Voltage Li-Ion Batteries , 2015 .