Tdrd1 acts as a molecular scaffold for Piwi proteins and piRNA targets in zebrafish

[1]  Haifan Lin,et al.  PAPI, a novel TUDOR-domain protein, complexes with AGO3, ME31B and TRAL in the nuage to silence transposition , 2011, Development.

[2]  S. Strome,et al.  P granules extend the nuclear pore complex environment in the C. elegans germ line , 2011, The Journal of cell biology.

[3]  T. Abe,et al.  TDRD5 is required for retrotransposon silencing, chromatoid body assembly, and spermiogenesis in mice , 2011, The Journal of cell biology.

[4]  Toshiaki Watanabe,et al.  The Yb Body, a Major Site for Piwi-associated RNA Biogenesis and a Gateway for Piwi Expression and Transport to the Nucleus in Somatic Cells* , 2010, The Journal of Biological Chemistry.

[5]  Kuniaki Saito,et al.  Roles for the Yb body components Armitage and Yb in primary piRNA biogenesis in Drosophila. , 2010, Genes & development.

[6]  T. Pawson,et al.  Structural basis for recognition of arginine methylated Piwi proteins by the extended Tudor domain , 2010, Proceedings of the National Academy of Sciences.

[7]  R. Sachidanandam,et al.  An in vivo RNAi assay identifies major genetic and cellular requirements for primary piRNA biogenesis in Drosophila , 2010, The EMBO journal.

[8]  R. Lehmann,et al.  Structural basis for methylarginine-dependent recognition of Aubergine by Tudor. , 2010, Genes & development.

[9]  Veena S Patil,et al.  Repression of Retroelements in Drosophila Germline via piRNA Pathway by the Tudor Domain Protein Tejas , 2010, Current Biology.

[10]  M. Siomi,et al.  How does the royal family of Tudor rule the PIWI-interacting RNA pathway? , 2010, Genes & development.

[11]  Juri Rappsilber,et al.  Arginine Methylation of Vasa Protein Is Conserved across Phyla* , 2010, The Journal of Biological Chemistry.

[12]  田中 敬 The TDRD9-MIWI2 complex is essential for piRNA-mediated retrotransposon silencing in the mouse male germline , 2010 .

[13]  T. Jongens,et al.  Arginine methylation of Aubergine mediates Tudor binding and germ plasm localization. , 2010, RNA.

[14]  T. Kodama,et al.  Functional involvement of Tudor and dPRMT5 in the piRNA processing pathway in Drosophila germlines , 2009, The EMBO journal.

[15]  A. Stark,et al.  The TDRD9-MIWI2 complex is essential for piRNA-mediated retrotransposon silencing in the mouse male germline. , 2009, Developmental cell.

[16]  T. Pawson,et al.  Mouse Piwi interactome identifies binding mechanism of Tdrkh Tudor domain to arginine methylated Miwi , 2009, Proceedings of the National Academy of Sciences.

[17]  G. Hannon,et al.  Cytoplasmic Compartmentalization of the Fetal piRNA Pathway in Mice , 2009, PLoS genetics.

[18]  J. Mackay,et al.  It takes two to tango: the structure and function of LIM, RING, PHD and MYND domains. , 2009, Current pharmaceutical design.

[19]  K. Asai,et al.  A regulatory circuit for piwi by the large Maf gene traffic jam in Drosophila , 2009, Nature.

[20]  Toshiro K. Ohsumi,et al.  Systematic and single cell analysis of Xenopus Piwi‐interacting RNAs and Xiwi , 2009, The EMBO journal.

[21]  T. Kai,et al.  piRNAs mediate posttranscriptional retroelement silencing and localization to pi-bodies in the Drosophila germline , 2009, The Journal of cell biology.

[22]  R. Sachidanandam,et al.  Proteomic analysis of murine Piwi proteins reveals a role for arginine methylation in specifying interaction with Tudor family members. , 2009, Genes & development.

[23]  S. Sugano,et al.  The Bombyx ovary-derived cell line endogenously expresses PIWI/PIWI-interacting RNA complexes. , 2009, RNA.

[24]  Thomas Franz,et al.  Loss of the Mili-interacting Tudor domain–containing protein-1 activates transposons and alters the Mili-associated small RNA profile , 2009, Nature Structural &Molecular Biology.

[25]  M. Reedy,et al.  The Yb protein defines a novel organelle and regulates male germline stem cell self-renewal in Drosophila melanogaster , 2009, The Journal of cell biology.

[26]  Z. Weng,et al.  Collapse of Germline piRNAs in the Absence of Argonaute3 Reveals Somatic piRNAs in Flies , 2009, Cell.

[27]  Julius Brennecke,et al.  Specialized piRNA Pathways Act in Germline and Somatic Tissues of the Drosophila Ovary , 2009, Cell.

[28]  Haifan Lin,et al.  Mili Interacts with Tudor Domain-Containing Protein 1 in Regulating Spermatogenesis , 2009, Current Biology.

[29]  R. Jessberger,et al.  Tdrd6 Is Required for Spermiogenesis, Chromatoid Body Architecture, and Regulation of miRNA Expression , 2009, Current Biology.

[30]  M. Sattler,et al.  Structure and ligand binding of the extended Tudor domain of D. melanogaster Tudor-SN. , 2009, Journal of molecular biology.

[31]  T. Jongens,et al.  Arginine methylation of Piwi proteins, catalyzed by dPRMT5, is required for Ago3 and Aub stability , 2009, Nature Cell Biology.

[32]  P. Zamore,et al.  Small silencing RNAs: an expanding universe , 2009, Nature Reviews Genetics.

[33]  Eugene Berezikov,et al.  Zili is required for germ cell differentiation and meiosis in zebrafish , 2008, The EMBO journal.

[34]  Peng Wang,et al.  The Drosophila RNA Methyltransferase, DmHen1, Modifies Germline piRNAs and Single-Stranded siRNAs in RISC , 2007, Current Biology.

[35]  Kuniaki Saito,et al.  Pimet, the Drosophila homolog of HEN1, mediates 2'-O-methylation of Piwi- interacting RNAs at their 3' ends. , 2007, Genes & development.

[36]  T. Schüpbach,et al.  zucchini and squash encode two putative nucleases required for rasiRNA production in the Drosophila germline. , 2007, Developmental cell.

[37]  T. Kai,et al.  Unique germ-line organelle, nuage, functions to repress selfish genetic elements in Drosophila melanogaster , 2007, Proceedings of the National Academy of Sciences.

[38]  Eugene Berezikov,et al.  A Role for Piwi and piRNAs in Germ Cell Maintenance and Transposon Silencing in Zebrafish , 2007, Cell.

[39]  Zissimos Mourelatos,et al.  Mouse Piwi-interacting RNAs are 2′-O-methylated at their 3′ termini , 2007, Nature Structural &Molecular Biology.

[40]  G. Hannon,et al.  MIWI2 is essential for spermatogenesis and repression of transposons in the mouse male germline. , 2007, Developmental cell.

[41]  Manolis Kellis,et al.  Discrete Small RNA-Generating Loci as Master Regulators of Transposon Activity in Drosophila , 2007, Cell.

[42]  Kuniaki Saito,et al.  A Slicer-Mediated Mechanism for Repeat-Associated siRNA 5' End Formation in Drosophila , 2007, Science.

[43]  Andreas Prlic,et al.  Ensembl 2007 , 2006, Nucleic Acids Res..

[44]  N. Nakatsuji,et al.  Tudor-related proteins TDRD1/MTR-1, TDRD6 and TDRD7/TRAP: domain composition, intracellular localization, and function in male germ cells in mice. , 2007, Developmental biology.

[45]  N. Nakatsuji,et al.  Tdrd1/Mtr-1, a tudor-related gene, is essential for male germ-cell differentiation and nuage/germinal granule formation in mice , 2006, Proceedings of the National Academy of Sciences.

[46]  Kuniaki Saito,et al.  Specific association of Piwi with rasiRNAs derived from retrotransposon and heterochromatic regions in the Drosophila genome. , 2006, Genes & development.

[47]  Vladimir Gvozdev,et al.  A Distinct Small RNA Pathway Silences Selfish Genetic Elements in the Germline , 2006, Science.

[48]  N. Lau,et al.  Characterization of the piRNA Complex from Rat Testes , 2006, Science.

[49]  C. Sander,et al.  A novel class of small RNAs bind to MILI protein in mouse testes , 2006, Nature.

[50]  Ravi Sachidanandam,et al.  A germline-specific class of small RNAs binds mammalian Piwi proteins , 2006, Nature.

[51]  S. Richard,et al.  Tudor Domains Bind Symmetrical Dimethylated Arginines* , 2005, Journal of Biological Chemistry.

[52]  P. Lasko,et al.  Tudor and its domains: germ cell formation from a Tudor perspective , 2005, Cell Research.

[53]  Xiaolan Zhang,et al.  Drosophila valois encodes a divergent WD protein that is required for Vasa localization and Oskar protein accumulation , 2005, Development.

[54]  A. Krøvel,et al.  Sexual dimorphic expression pattern of a splice variant of zebrafish vasa during gonadal development. , 2004, Developmental biology.

[55]  Yoichi Matsuda,et al.  Mili, a mammalian member of piwi family gene, is essential for spermatogenesis , 2004, Development.

[56]  Michael Q. Zhang,et al.  The Argonaute family: tentacles that reach into RNAi, developmental control, stem cell maintenance, and tumorigenesis. , 2002, Genes & development.

[57]  Shinji Yamaguchi,et al.  RNAi is activated during Drosophila oocyte maturation in a manner dependent on aubergine and spindle-E. , 2002, Genes & development.

[58]  W. Deng,et al.  miwi, a murine homolog of piwi, encodes a cytoplasmic protein essential for spermatogenesis. , 2002, Developmental cell.

[59]  P. Macdonald,et al.  Aubergine encodes a Drosophila polar granule component required for pole cell formation and related to eIF2C. , 2001, Development.

[60]  A. Aravin,et al.  Double-stranded RNA-mediated silencing of genomic tandem repeats and transposable elements in the D. melanogaster germline , 2001, Current Biology.

[61]  J. Priess,et al.  P granules in the germ cells of Caenorhabditis elegans adults are associated with clusters of nuclear pores and contain RNA. , 2000, Developmental biology.

[62]  Haifan Lin,et al.  piwi encodes a nucleoplasmic factor whose activity modulates the number and division rate of germline stem cells. , 2000, Development.

[63]  Lukas Wagner,et al.  A Greedy Algorithm for Aligning DNA Sequences , 2000, J. Comput. Biol..

[64]  Haifan Lin,et al.  A novel class of evolutionarily conserved genes defined by piwi are essential for stem cell self-renewal. , 1998, Genes & development.

[65]  Ruth Lehmann,et al.  Induction of germ cell formation by oskar , 1992, Nature.

[66]  A. Spurr A low-viscosity epoxy resin embedding medium for electron microscopy. , 1969, Journal of ultrastructure research.

[67]  M. Karnovsky,et al.  A formaldehyde-glutaraldehyde fixative of high osmolality for use in electron-microscopy , 1965 .

[68]  K. C. Richardson,et al.  Embedding in epoxy resins for ultrathin sectioning in electron microscopy. , 1960, Stain technology.