Spontaneous and induced minisatellite instability

Minisatellites provide not only the basis for DNA fingerprinting and DNA profiling but also extremely informative systems for analysing processes of tandem repeat turnover in the human genome. Minisatellite instability appears to involve distinct mutation processes in somatic and germline cells; in the germline, mutation is frequently dominated by inter‐allelic conversion‐like events most likely occurring at meiosis and apparently regulated by cis‐acting mutation initiator elements. Attempts to define these initiators in transgenic mice have so far been thwarted by what appears to be a major human/mouse barrier to the inter‐species transfer of repeat instability. Minisatellites not only show high frequency spontaneous mutation in the germline, but also appear to be very sensitive to mutation induction by ionizing radiation, both in experimentally irradiated mice and in human populations exposed following the Chernobyl disaster; the mechanisms of mutation induction by radiation remain enigmatic.

[1]  H. Ellegren,et al.  Directional evolution in germline microsatellite mutations , 1996, Nature Genetics.

[2]  Bert Vogelstein,et al.  Hypermutability and mismatch repair deficiency in RER+ tumor cells , 1993, Cell.

[3]  William Amos,et al.  Microsatellites show mutational bias and heterozygote instability , 1996, Nature Genetics.

[4]  P. Gill,et al.  Human VNTR mutation and sex. , 1993, EXS.

[5]  A J Jeffreys,et al.  Characterization of a highly unstable mouse minisatellite locus: evidence for somatic mutation during early development. , 1989, Genomics.

[6]  A. Jeffreys,et al.  Variable germline and embryonic instability of the human minisatellite MS32 (D1S8) in transgenic mice. , 1994, The EMBO journal.

[7]  M. Jobling,et al.  Molecular biology and human diversity: Digital DNA typing of human paternal lineages , 1996 .

[8]  B. Olaisen,et al.  Somatic mutations in VNTR‐Locus D1S7 in human colorectal carcinomas are associated with microsatellite instability , 1995, Human mutation.

[9]  A. Jeffreys,et al.  Analysis of somatic mutations at human minisatellite loci in tumors and cell lines. , 1989, Genomics.

[10]  K. Dohi,et al.  Radiation induction of germline mutation at a hypervariable mouse minisatellite locus. , 1993, International journal of radiation biology.

[11]  K. Hiyama,et al.  Lack of effects of atomic bomb radiation on genetic instability of tandem-repetitive elements in human germ cells. , 1995, American journal of human genetics.

[12]  R I Richards,et al.  Simple tandem DNA repeats and human genetic disease. , 1995, Proceedings of the National Academy of Sciences of the United States of America.

[13]  G Vergnaud,et al.  Complex recombination events at the hypermutable minisatellite CEB1 (D2S90). , 1994, The EMBO journal.

[14]  T. Egeland,et al.  Mutation rate in the hypervariable VNTR g3 (D7S22) is affected by allele length and a flanking DNA sequence polymorphism near the repeat array. , 1996, American journal of human genetics.

[15]  M. Kodaira,et al.  Effects of radiation on children , 1996, Nature.

[16]  A. Jeffreys,et al.  Characterization of a panel of highly variable minisatellites cloned from human DNA , 1987, Annals of human genetics.

[17]  A. Urquhart,et al.  Automated DNA profiling employing multiplex amplification of short tandem repeat loci. , 1993, PCR methods and applications.

[18]  A. Jeffreys,et al.  Clustering of hypervariable minisatellites in the proterminal regions of human autosomes. , 1988, Genomics.

[19]  A. Jeffreys,et al.  Instability of long inverted repeats within mouse transgenes. , 1996, The EMBO journal.

[20]  M. Jobling,et al.  Mutation processes at human minisatellites , 1995, Electrophoresis.

[21]  T. Petes,et al.  The stabilization of repetitive tracts of DNA by variant repeats requires a functional DNA mismatch repair system , 1995, Cell.

[22]  K. Kinzler,et al.  Clues to the pathogenesis of familial colorectal cancer. , 1993, Science.

[23]  J. Weber Informativeness of human (dC-dA)n.(dG-dT)n polymorphisms. , 1990, Genomics.

[24]  S N Thibodeau,et al.  Microsatellite instability in cancer of the proximal colon. , 1993, Science.

[25]  V. Beral,et al.  Thyroid cancer in the Ukraine , 1995, Nature.

[26]  M. Lathrop,et al.  The use of synthetic tandem repeats to isolate new VNTR loci: cloning of a human hypermutable sequence. , 1991, Genomics.

[27]  A. Jeffreys,et al.  Spontaneous mutation rates to new length alleles at tandem-repetitive hypervariable loci in human DNA , 1988, Nature.

[28]  Y. Nakamura,et al.  Minisatellite linkage maps in the mouse by cross-hybridization with human probes containing tandem repeats. , 1990, Proceedings of the National Academy of Sciences of the United States of America.

[29]  A. Jeffreys,et al.  Individual-specific ‘fingerprints’ of human DNA , 1985, Nature.

[30]  A. Jeffreys,et al.  Digital DNA typing at a second hypervariable locus by minisatellite variant repeat mapping. , 1993, Human molecular genetics.

[31]  A. Jeffreys,et al.  Minisatellite repeat coding as a digital approach to DNA typing , 1991, Nature.

[32]  K. Kidd,et al.  Minisatellite diversity supports a recent African origin for modern humans , 1996, Nature Genetics.

[33]  M. Fey,et al.  Somatic mutations detected by mini- and microsatellite DNA markers reveal clonal intratumor heterogeneity in gastrointestinal cancers. , 1995, Cancer research.

[34]  Robert I. Richards,et al.  Simple repeat DNA is not replicated simply , 1994, Nature Genetics.

[35]  A J Jeffreys,et al.  A tetranucleotide repeat mouse minisatellite displaying substantial somatic instability during early preimplantation development. , 1993, Genomics.

[36]  K. Dohi,et al.  Dose-response of a radiation induction of a germline mutation at a hypervariable mouse minisatellite locus. , 1995, International journal of radiation biology.

[37]  A. Jeffreys,et al.  Mouse minisatellite mutations induced by ionizing radiation , 1993, Nature Genetics.

[38]  A. Jeffreys,et al.  Mouse DNA 'fingerprints': analysis of chromosome localization and germ-line stability of hypervariable loci in recombinant inbred strains. , 1987, Nucleic acids research.

[39]  J. Szostak,et al.  Extensive 3′-overhanging, single-stranded DNA associated with the meiosis-specific double-strand breaks at the ARG4 recombination initiation site , 1991, Cell.

[40]  A. Jeffreys,et al.  Tandemly repeated transgenes of the human minisatellite MS32 (D1S8), with novel mouse gamma satellite integration. , 1994, Nucleic acids research.

[41]  A J Jeffreys,et al.  Allelic diversity at minisatellite MS205 (D16S309): evidence for polarized variability. , 1993, Human molecular genetics.

[42]  J W Szostak,et al.  A poly(dA.dT) tract is a component of the recombination initiation site at the ARG4 locus in Saccharomyces cerevisiae , 1991, Molecular and cellular biology.

[43]  A. Nicolas,et al.  The control in cis of the position and the amount of the ARG4 meiotic double‐strand break of Saccharomyces cerevisiae. , 1993, The EMBO journal.

[44]  S. Warren,et al.  Cryptic and polar variation of the fragile X repeat could result in predisposing normal alleles , 1994, Cell.

[45]  A. Jeffreys,et al.  Mutation rate heterogeneity and the generation of allele diversity at the human minisatellite MS205 (D16S309). , 1996, Human molecular genetics.

[46]  J. Weissenbach,et al.  Intergenerational instability of the CAG repeat of the gene for Machado-Joseph disease (MJD1) is affected by the genotype of the normal chromosome: implications for the molecular mechanisms of the instability of the CAG repeat. , 1996, Human molecular genetics.

[47]  A. Jeffreys,et al.  Distribution of tandem repeat polymorphism within minisatellite MS621 (D5S110) , 1996, Annals of human genetics.

[48]  A. Jeffreys,et al.  Evolutionary transience of hypervariable minisatellites in man and the primates , 1991, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[49]  H. Zoghbi,et al.  Evidence for a mechanism predisposing to intergenerational CAG repeat instability in spinocerebellar ataxia type I , 1993, Nature Genetics.

[50]  Victoria Wilson,et al.  Repeat unit sequence variation in minisatellites: A novel source of DNA polymorphism for studying variation and mutation by single molecule analysis , 1990, Cell.

[51]  R. Moyzis,et al.  Solution structures of the individual single strands of the fragile X DNA triplets (GCC)n.(GGC)n. , 1996, Nucleic acids research.

[52]  A. Jeffreys,et al.  Minisatellite mutation rate variation associated with a flanking DNA sequence polymorphism , 1994, Nature Genetics.

[53]  A. Jeffreys,et al.  Four-state MVR-PCR: increased discrimination of digital DNA typing by simultaneous analysis of two polymorphic sites within minisatellite variant repeats at D1S8. , 1993, Human molecular genetics.

[54]  A. Jeffreys,et al.  Human minisatellite mutation rate after the Chernobyl accident , 1996, Nature.

[55]  A. Jeffreys,et al.  Somatic mutation processes at a human minisatellite. , 1997, Human molecular genetics.

[56]  A. Jeffreys,et al.  Complex gene conversion events in germline mutation at human minisatellites , 1994, Nature Genetics.

[57]  A. Jeffreys,et al.  Spontaneous mutation at the hypervariable mouse minisatellite locus Ms6-hm: flanking DNA sequence and analysis of germline and early somatic mutation events , 1991, Proceedings of the Royal Society of London. Series B: Biological Sciences.