The k-hop connected dominating set problem: approximation and hardness

Let G be a connected graph and k be a positive integer. A vertex subset D of G is a k-hop connected dominating set if the subgraph of G induced by D is connected, and for every vertex v in G there is a vertex u in D such that the distance between v and u in G is at most k. We study the problem of finding a minimum k-hop connected dominating set of a graph ($${\textsc {Min}}k{\hbox {-}\textsc {CDS}}$$MINk-CDS). We prove that $${\textsc {Min}}k{\hbox {-}\textsc {CDS}}$$MINk-CDS is $$\mathscr {NP}$$NP-hard on planar bipartite graphs of maximum degree 4. We also prove that $${\textsc {Min}}k{\hbox {-}\textsc {CDS}}$$MINk-CDS is $$\mathscr {APX}$$APX-complete on bipartite graphs of maximum degree 4. We present inapproximability thresholds for $${\textsc {Min}}k{\hbox {-}\textsc {CDS}}$$MINk-CDS on bipartite and on (1, 2)-split graphs. Interestingly, one of these thresholds is a parameter of the input graph which is not a function of its number of vertices. We also discuss the complexity of computing this graph parameter. On the positive side, we show an approximation algorithm for $${\textsc {Min}}k{\hbox {-}\textsc {CDS}}$$MINk-CDS. Finally, when $$k=1$$k=1, we present two new approximation algorithms for the weighted version of the problem restricted to graphs with a polynomially bounded number of minimal separators.

[1]  Marina Moscarini,et al.  Distance-Hereditary Graphs, Steiner Trees, and Connected Domination , 1988, SIAM J. Comput..

[2]  Hong-Gwa Yeh,et al.  Weighted Connected Domination and Steiner Trees in Distance-hereditary Graphs , 1998, Discret. Appl. Math..

[3]  Leonidas Palios,et al.  Minimal separators in P4-sparse graphs , 2006, Discret. Math..

[4]  Patrice Ossona de Mendez,et al.  Distributed Domination on Graph Classes of Bounded Expansion , 2017, SPAA.

[5]  Samir Khuller,et al.  Approximation Algorithms for Connected Dominating Sets , 1996, Algorithmica.

[6]  Weili Wu,et al.  A greedy approximation for minimum connected dominating sets , 2004, Theor. Comput. Sci..

[7]  M. Chleb ´ õk,et al.  Approximation Hardness of Dominating Set Problems in Bounded Degree Graphs , 2008 .

[8]  Fabrizio Grandoni,et al.  A linear time algorithm to list the minimal separators of chordal graphs , 2006, Discret. Math..

[9]  David Manlove,et al.  Vertex and Edge Covers with Clustering Properties: Complexity and Algorithms , 2009, ACiD.

[10]  Weili Wu,et al.  A PTAS for minimum connected dominating set in 3-dimensional Wireless sensor networks , 2009, J. Glob. Optim..

[11]  Y. Daniel Liang Steiner Set and Connected Domination in Trapezoid Graphs , 1995, Inf. Process. Lett..

[12]  Alessandro Panconesi Fast distributed algorithms via primal-dual , 2007 .

[13]  P. Pardalos,et al.  Handbook of Combinatorial Optimization , 1998 .

[14]  Andreas Brandstädt,et al.  The NP-Completeness of Steiner Tree and Dominating Set for Chordal Bipartite Graphs , 1987, Theor. Comput. Sci..

[15]  M. Moscarini Doubly chordal graphs, steiner trees, and connected domination , 1993, Networks.

[16]  Geevarghese Philip,et al.  Hardness of r-dominating set on Graphs of Diameter (r + 1) , 2013, IPEC.

[17]  M. Golumbic Algorithmic graph theory and perfect graphs , 1980 .

[18]  Wei Wang,et al.  A PTAS for minimum d-hop connected dominating set in growth-bounded graphs , 2010, Optim. Lett..

[19]  Aravind Srinivasan,et al.  Fast distributed algorithms for (weakly) connected dominating sets and linear-size skeletons , 2003, J. Comput. Syst. Sci..

[20]  Panos M. Pardalos,et al.  Analysis of greedy approximations with nonsubmodular potential functions , 2008, SODA '08.

[21]  Xiuzhen Cheng,et al.  Connected Dominating Set in Sensor Networks and MANETs , 2004 .

[22]  Paul S. Bonsma,et al.  A 3/2-Approximation Algorithm for Finding Spanning Trees with Many Leaves in Cubic Graphs , 2008, WG.

[23]  Shankar M. Venkatesan,et al.  Approximation and Intractability Results for the Maximum Cut Problem and its Variants , 1991, IEEE Trans. Computers.

[24]  Samir Khuller,et al.  Improved Methods for Approximating Node Weighted Steiner Trees and Connected Dominating Sets , 1998, Inf. Comput..

[25]  Yoshiko Wakabayashi,et al.  The k-hop connected dominating set problem: hardness and polyhedra , 2015, Electron. Notes Discret. Math..

[26]  Martin Farber,et al.  Steiner trees, connected domination and strongly chordal graphs , 1985, Networks.

[27]  András Gyárfás Generalized Split Graphs and Ramsey Numbers , 1998, J. Comb. Theory, Ser. A.

[28]  S. Safra,et al.  On the hardness of approximating minimum vertex cover , 2005 .

[29]  Ding-Zhu Du,et al.  Connected Dominating Set: Theory and Applications , 2012 .

[30]  Miroslav Chlebík,et al.  Approximation hardness of dominating set problems in bounded degree graphs , 2008, Inf. Comput..

[31]  Peter J. Slater,et al.  Fundamentals of domination in graphs , 1998, Pure and applied mathematics.

[32]  A. Brandstädt,et al.  Graph Classes: A Survey , 1987 .

[33]  Qing Zhao,et al.  A Note on: 'Algorithms for Connected Set Cover Problem and Fault-Tolerant Connected Set Cover Problem' , 2011, ArXiv.

[34]  Dieter Kratsch,et al.  Listing All Minimal Separators of a Graph , 1998, SIAM J. Comput..

[35]  Paul S. Bonsma,et al.  Max-leaves spanning tree is APX-hard for cubic graphs , 2009, J. Discrete Algorithms.

[36]  Johann Hurink,et al.  A PTAS for the Minimum Dominating Set Problem in Unit Disk Graphs , 2005, WAOA.

[37]  Charles J. Colbourn,et al.  Permutation graphs: Connected domination and Steiner trees , 1991, Discret. Math..

[38]  Vasek Chvátal,et al.  A Greedy Heuristic for the Set-Covering Problem , 1979, Math. Oper. Res..

[39]  Anne Berry,et al.  Generating All the Minimal Separators of a Graph , 1999, Int. J. Found. Comput. Sci..

[40]  C. P. Rangan,et al.  A Unified Approach to Domination Problems on Interval Graphs , 1988, Inf. Process. Lett..

[41]  Miroslav Chlebík,et al.  Approximation Hardness of Dominating Set Problems , 2004, ESA.

[42]  Peng-Jun Wan,et al.  Distributed Construction of Connected Dominating Set in Wireless Ad Hoc Networks , 2002, Proceedings.Twenty-First Annual Joint Conference of the IEEE Computer and Communications Societies.

[43]  Dung T. Huynh,et al.  Connected D-Hop Dominating Sets in Mobile Ad Hoc Networks , 2006, 2006 4th International Symposium on Modeling and Optimization in Mobile, Ad Hoc and Wireless Networks.

[44]  Bang Ye Wu,et al.  A polynomial time approximation scheme for the two-source minimum routing cost spanning trees , 2002, J. Algorithms.

[45]  Philip N. Klein,et al.  Approximating connectivity domination in weighted bounded-genus graphs , 2016, STOC.

[46]  Peng-Jun Wan,et al.  Distributed Construction of Connected Dominating Set in Wireless Ad Hoc Networks , 2004, Mob. Networks Appl..

[47]  Ashutosh Kumar Singh,et al.  Connected dominating set for wireless ad hoc networks: a survey , 2015 .

[48]  Lhouari Nourine,et al.  Enumeration of Minimal Dominating Sets and Variants , 2011, FCT.

[49]  Erik D. Demaine,et al.  Bidimensionality: new connections between FPT algorithms and PTASs , 2005, SODA '05.

[50]  Leonidas Palios,et al.  Minimal separators in P 4-sparse graphs , 2005 .

[51]  M. Golumbic Algorithmic Graph Theory and Perfect Graphs (Annals of Discrete Mathematics, Vol 57) , 2004 .

[52]  Samir Khuller,et al.  Revisiting Connected Dominating Sets: An Optimal Local Algorithm? , 2018, 2018 Information Theory and Applications Workshop (ITA).

[53]  Jiguo Yu,et al.  Connected dominating sets in wireless ad hoc and sensor networks - A comprehensive survey , 2013, Comput. Commun..

[54]  Prajwal R. Prasad,et al.  Distributed construction of connected dominating set in unit disk graphs , 2017, J. Parallel Distributed Comput..

[55]  Glencora Borradaile,et al.  Optimal dynamic program for r-domination problems over tree decompositions , 2015, IPEC.

[56]  N. Sadagopan,et al.  On 2K2-free graphs - Structural and Combinatorial View , 2016, 1602.03802.

[57]  Venkatesan Guruswami,et al.  A New Multilayered PCP and the Hardness of Hypergraph Vertex Cover , 2005, SIAM J. Comput..

[58]  Giorgio Gambosi,et al.  Complexity and Approximation , 1999, Springer Berlin Heidelberg.

[59]  Feodor F. Dragan,et al.  HT-graphs: centers, connected r-domination and Steiner trees , 1993, Comput. Sci. J. Moldova.

[60]  K. Arvind,et al.  Connected Domination and Steiner Set on Weighted Permutation Graphs , 1992, Inf. Process. Lett..

[61]  Deying Li,et al.  A polynomial‐time approximation scheme for the minimum‐connected dominating set in ad hoc wireless networks , 2003, Networks.

[62]  Jérôme Monnot,et al.  Complexity and approximation results for the connected vertex cover problem in graphs and hypergraphs , 2007, J. Discrete Algorithms.

[63]  Dieter Kratsch,et al.  Linear-time certifying recognition algorithms and forbidden induced subgraphs , 2007, Nord. J. Comput..

[64]  A. Brandstädt,et al.  A linear-time algorithm for connected r-domination and Steiner tree on distance-hereditary graphs , 1998 .

[65]  Hong-Gwa Yeh,et al.  Weighted Connected Domination and Steiner Trees in Distance-Hereditary Graphs , 1995, Combinatorics and Computer Science.