Beam wander in a turbulent medium: An application of Ehrenfest’s theorem

Beam wander of a finite optical beam propagating in a turbulent medium is investigated theoretically. Using the optical analog of Ehrenfest’s theorem, it is shown that the centroid of a finite beam propagates as a paraxial ray in a certain effective refractive index that depends on the irradiance profile of the beam. Ray statistics in the effective refractive index are studied for arbitrary irradiance profiles and new results are obtained for the variance of spot displacement and beam angle of arrival. These results are then applied to the particular cases of focused and collimated gaussian beams in atmospheric turbulence with a modified Von Karman power spectrum to yield the functional dependence of spot dancing and angle-of-arrival statistics on the inner and outer scales of turbulence and on the Fresnel number for focused gaussian beams.