Investigation of AA2024-T3 surfaces modified by cerium compounds: A localized approach

[1]  A. Lanzutti,et al.  Localized corrosion inhibition by cerium species on clad AA2024 aluminium alloy investigated by means of electrochemical micro-cell , 2012 .

[2]  Seong‐Hyeon Hong,et al.  Electrochemical corrosion properties of CeO2-containing coatings on AZ31 magnesium alloys prepared by plasma electrolytic oxidation , 2012 .

[3]  A. Durán,et al.  Study of the effect of cerium nitrate on AA2024-T3 by means of electrochemical micro-cell technique , 2012 .

[4]  V. Vignal,et al.  The use of microcapillary techniques to study the corrosion resistance of AZ91 magnesium alloy at the microscale , 2011 .

[5]  A. Hughes,et al.  Corrosion of AA2024-T3 Part I: Localised corrosion of isolated IM particles , 2011 .

[6]  A. Durán,et al.  Electrochemical techniques for practical evaluation of corrosion inhibitor effectiveness. Performance of cerium nitrate as corrosion inhibitor for AA2024T3 alloy , 2010 .

[7]  A. Lanzutti,et al.  Influence of oxidizing ability of the medium on the growth of lanthanide layers on galvanized steel , 2010 .

[8]  B. Vuillemin,et al.  Effect of Aeration on the Microelectrochemical Characterization of Al2Cu Intermetallic Phases , 2009 .

[9]  A. Hughes,et al.  How complex is the microstructure of AA2024-T3? , 2009 .

[10]  T. Young,et al.  Electrochemical Evaluation of Constituent Intermetallics in Aluminum Alloy 2024-T3 Exposed to Aqueous Vanadate Inhibitors , 2009 .

[11]  P. Uggowitzer,et al.  The influence of MgSi particle reactivity and dissolution processes on corrosion in Al–Mg–Si alloys , 2008 .

[12]  R. Buchheit,et al.  Investigation and Discussion of Characteristics for Intermetallic Phases Common to Aluminum Alloys as a Function of Solution pH , 2008 .

[13]  M. Montemor,et al.  Characterization of rare-earth conversion films formed on the AZ31 magnesium alloy and its relation with corrosion protection , 2007 .

[14]  S. Lamaka,et al.  Mechanism of corrosion inhibition of AA2024 by rare-earth compounds. , 2006, The journal of physical chemistry. B.

[15]  M. Olivier,et al.  Cerium treatments for temporary protection of electroplated steel , 2005 .

[16]  N. Birbilis,et al.  Inhibition of AA2024-T3 on a Phase-by-Phase Basis Using an Environmentally Benign Inhibitor, Cerium Dibutyl Phosphate , 2005 .

[17]  Rudolph G. Buchheit,et al.  Electrochemical Characteristics of Intermetallic Phases in Aluminum Alloys An Experimental Survey and Discussion , 2005 .

[18]  J. Damborenea,et al.  Use of rare earth salts as electrochemical corrosion inhibitors for an Al–Li–Cu (8090) alloy in 3.56% NaCl , 2004 .

[19]  R. Kelly,et al.  In Situ Confocal Laser Scanning Microscopy of AA 2024-T3 Corrosion Metrology I. Localized Corrosion of Particles , 2004 .

[20]  H. Terryn,et al.  Corrosion behaviour of different tempers of AA7075 aluminium alloy , 2004 .

[21]  M. Lohrengel,et al.  Electrochemical characterisation of aluminium AA7075-T6 and solution heat treated AA7075 using a micro-capillary cell , 2003 .

[22]  R. Alkire,et al.  Microelectrochemical Studies of Pit Initiation at Single Inclusions in Al 2024-T3 , 2001 .

[23]  J. Calvino,et al.  Lanthanide compounds as environmentally-friendly corrosion inhibitors of aluminium alloys : A review , 1998 .

[24]  Gordon P. Bierwagen,et al.  Review of alternatives to chromate for corrosion protection of aluminum aerospace alloys , 1998 .

[25]  R. P. Grant,et al.  Local Dissolution Phenomena Associated with S Phase ( Al2CuMg ) Particles in Aluminum Alloy 2024‐T3 , 1997 .

[26]  J. T. Staley,et al.  Application of modern aluminum alloys to aircraft , 1996 .

[27]  R. Wei,et al.  Microconstituent-Induced Pitting Corrosion in Aluminum Alloy 2024-T3 , 1996 .

[28]  J. P. Moran,et al.  Localized Corrosion Behavior of Alloy 2090—The Role of Microstructural Heterogeneity , 1990 .

[29]  D. Arnott,et al.  Cationic film-forming inhibitors for the corrosion protection of AA 7075 aluminum alloy in chloride solutions , 1987 .