Effects of an interposed Mo layer on the interfacial reactions of Ti/Si0.76Ge0.24 by rapid thermal annealing and pulsed laser annealing

The thickness effect of an interposed Mo layer between Ti and Si0.76Ge0.24 films on the lowering of the formation temperature of C54 (Ti, Mo)(Si1-xGex)2, thereby reducing Ge segregation and agglomeration of the C54 (Ti, Mo)(Si1-xGex)2 films, is studied. Upon rapid thermal annealing, the interposed Mo layer can significantly reduce the formation temperature of C54 (Ti, Mo)(Si1-xGex)2; however, the amount of reduction decreases with the Mo thickness. The electron/atom ratio seems to be one of the important factors in the lowering of the formation temperature of C54 (Ti, Mo)(Si1-xGex)2. For the samples having an interposed Mo layer 0.5 nm thick a smooth C54 (Ti, Mo)(Si1-xGex)2 film without Ge segregation can be grown after annealing at a temperature of 625-650 °C. For pulsed KrF laser annealing the rapid melt/solidification process allows only growth of C40 Ti(Si1-xGex)2 or C40 (Ti, Mo)(Si1-xGex)2 even though an interposed Mo layer is introduced into the Ti/Si0.76Ge0.24 samples, indicating that upon pulsed laser annealing the kinetic effect can dominate over the thermodynamic effect.

[1]  Wen-Tai Lin,et al.  Effects of Mo-free C40 Ti(Si1−xGex)2 precursors and the thickness of an interposed Mo layer on the enhanced formation of C54 Ti(Si1−xGex)2 , 1999 .

[2]  Wen-Tai Lin,et al.  Interfacial reactions of Co/Si0.76Ge0.24 and Co(Si0.76Ge0.24)/Si0.76Ge0.24 by pulsed KrF laser annealing , 1999 .

[3]  L. J. Chen,et al.  Formation of C54–TiSi_2 in titanium on nitrogen-ion-implanted (001)Si with a thin interposing Mo layer , 1999 .

[4]  H. Onoda,et al.  Microstructural study on the C49-to-C54 phase transformation in TiSi2 formed from preamorphization implantation , 1999 .

[5]  Lun-Lun Chen,et al.  Mechanism of enhanced formation of C54–TiSi2 in high-temperature deposited Ti thin films on preamorphized (001)Si , 1999 .

[6]  L. Miglio,et al.  Electronic origin of the stability trend in TiSi2 phases with Al or Mo layers , 1998 .

[7]  J. Kittl,et al.  MECHANISM OF LOW TEMPERATURE C54 TISI2 FORMATION BYPASSING C49 TISI2 : EFFECT OF SI MICROSTRUCTURE AND MO IMPURITIES ON THE TI-SI REACTION PATH , 1998 .

[8]  Wen-Tai Lin,et al.  Interfacial reactions of Pd/Si0.76Ge0.24 by pulsed KrF laser annealing , 1998 .

[9]  F. d'Heurle,et al.  Enhanced thermal stability of C49 TiSi2 in the presence of aluminum , 1998 .

[10]  F. d'Heurle,et al.  Low temperature formation of C54–TiSi2 using titanium alloys , 1997 .

[11]  C. Petersson,et al.  ENHANCEMENT OF THE FORMATION OF THE C54 PHASE OF TISI2 THROUGH THE INTRODUCTION OF AN INTERPOSED LAYER OF TANTALUM , 1997 .

[12]  Wen-Tai Lin,et al.  Pulsed KrF laser annealing of Ni/Si0.76Ge0.24 films , 1997 .

[13]  F. d'Heurle,et al.  Lowering the formation temperature of the C54-TiSi 2 phase using a metallic interfacial layer , 1997 .

[14]  R. Beserman,et al.  Kinetics of processes in the Ti–Si1−xGex systems , 1996 .

[15]  C. Petersson,et al.  Enhanced formation of the C54 phase of TiSi2 by an interposed layer of molybdenum , 1996 .

[16]  David J. Smith,et al.  The effect of carbon on strain relaxation and phase formation in the Ti/Si1−x−yGexCy/Si contact system , 1996 .

[17]  Randy W. Mann,et al.  Reduction of the C54–TiSi2 phase transformation temperature using refractory metal ion implantation , 1995 .

[18]  D. Sayers,et al.  Film thickness effects in the Ti–Si1−xGex solid phase reaction , 1995 .

[19]  D. Sayers,et al.  Stability of C54 titanium germanosilicide on a silicon-germanium alloy substrate , 1995 .

[20]  Z. Ma,et al.  Microstructural aspects and mechanism of the C49‐to‐C54 polymorphic transformation in titanium disilicide , 1995 .

[21]  Wen-Jie Qi,et al.  Solid state reaction of Co,Ti with epitaxially‐grown Si1−xGex film on Si(100) substrate , 1995 .

[22]  James S. Nakos,et al.  Comparison of transformation to low-resistivity phase and agglomeration of TiSi/sub 2/ and CoSi/sub 2/ , 1991 .

[23]  菊池 潮美 Cohesion in Metals, Transition Metal alloys, F.R.de Boer,R.Boom,W.C.M.Mattens,A.R.Miedema,A.K.Niessen(共著), F.R de boer,D.G.pettifor編Cohesion and Structure Vol.1, 1989年, North-Holland発行, 23×15.5cm, 758ページ, Dfl.250 , 1990 .

[24]  H. Kuwano,et al.  Resistivity and morphology of TiSi2 formed on Xe+‐implanted polycrystalline silicon , 1990 .

[25]  F. D. Boer Cohesion in Metals: Transition Metal Alloys , 1989 .

[26]  F. d'Heurle,et al.  Reaction of titanium with germanium and silicon‐germanium alloys , 1989 .

[27]  C. Ting,et al.  Thermal stability of TiSi2 on mono‐ and polycrystalline silicon , 1986 .

[28]  R. Beyers,et al.  Metastable phase formation in titanium‐silicon thin films , 1985 .

[29]  William Hume-Rothery,et al.  The structure of metals and alloys , 1939 .