Slant from texture and disparity cues: optimal cue combination.

How does the visual system combine information from different depth cues to estimate three-dimensional scene parameters? We tested a maximum-likelihood estimation (MLE) model of cue combination for perspective (texture) and binocular disparity cues to surface slant. By factoring the reliability of each cue into the combination process, MLE provides more reliable estimates of slant than would be available from either cue alone. We measured the reliability of each cue in isolation across a range of slants and distances using a slant-discrimination task. The reliability of the texture cue increases as |slant| increases and does not change with distance. The reliability of the disparity cue decreases as distance increases and varies with slant in a way that also depends on viewing distance. The trends in the single-cue data can be understood in terms of the information available in the retinal images and issues related to solving the binocular correspondence problem. To test the MLE model, we measured perceived slant of two-cue stimuli when disparity and texture were in conflict and the reliability of slant estimation when both cues were available. Results from the two-cue study indicate, consistent with the MLE model, that observers weight each cue according to its relative reliability: Disparity weight decreased as distance and |slant| increased. We also observed the expected improvement in slant estimation when both cues were available. With few discrepancies, our data indicate that observers combine cues in a statistically optimal fashion and thereby reduce the variance of slant estimates below that which could be achieved from either cue alone. These results are consistent with other studies that quantitatively examined the MLE model of cue combination. Thus, there is a growing empirical consensus that MLE provides a good quantitative account of cue combination and that sensory information is used in a manner that maximizes the precision of perceptual estimates.

[1]  W. G. Cochran Problems arising in the analysis of a series of similar experiments , 1937 .

[2]  K. N. Ogle,et al.  Cyclofusional movements. , 1946, Archives of ophthalmology.

[3]  S. Freguia Researches in Binocular Vision. , 1950 .

[4]  G. Heath,et al.  The influence of visual acuity on accommodative responses of the eye. , 1956, American journal of optometry and archives of American Academy of Optometry.

[5]  W. D. Wright Physiological Optics , 1958, Nature.

[6]  D. M. Green,et al.  Signal detection theory and psychophysics , 1966 .

[7]  B. Julesz,et al.  A disparity gradient limit for binocular fusion. , 1980, Science.

[8]  J. Cutting,et al.  Three gradients and the perception of flat and curved surfaces. , 1984, Journal of experimental psychology. General.

[9]  Gordon E. Legge,et al.  Binocular contrast summation—I. Detection and discrimination , 1984, Vision Research.

[10]  Michael S. Landy,et al.  Detection and Discrimination , 1991 .

[11]  E. Johnston Systematic distortions of shape from stereopsis , 1991, Vision Research.

[12]  Barbara Gillam,et al.  Perspective, Orientation Disparity, and Anisotropy in Stereoscopic Slant Perception , 1992, Perception.

[13]  M. Landy,et al.  A perturbation analysis of depth perception from combinations of texture and motion cues , 1993, Vision Research.

[14]  Andrew Blake,et al.  Shape from texture: Ideal observers and human psychophysics , 1993, Vision Research.

[15]  John P. Frisby,et al.  Interaction of stereo, texture and outline cues in the shape perception of three-dimensional ridges , 1993, Vision Research.

[16]  A. Parker,et al.  Integration of depth modules: Stereopsis and texture , 1993, Vision Research.

[17]  I. Howard,et al.  Relative shear disparities and the perception of surface inclination , 1994, Vision Research.

[18]  J. Porrill,et al.  Stereopsis, vertical disparity and relief transformations , 1995, Vision Research.

[19]  M F Bradshaw,et al.  Disparity Scaling and the Perception of Frontoparallel Surfaces , 1995, Perception.

[20]  Charles Goodwin,et al.  Seeing in Depth , 1995 .

[21]  M. Landy,et al.  Measurement and modeling of depth cue combination: in defense of weak fusion , 1995, Vision Research.

[22]  D Buckley,et al.  Integration of Stereo, Texture, and Outline Cues during Pinhole Viewing of Real Ridge-Shaped Objects and Stereograms of Ridges , 1995, Perception.

[23]  B. Rogers,et al.  The effect of display size on disparity scaling from differential perspective and vergence cues , 1996, Vision Research.

[24]  Mark de Berg,et al.  Computational geometry: algorithms and applications , 1997 .

[25]  David C. Knill,et al.  Surface orientation from texture: ideal observers, generic observers and the information content of texture cues , 1998, Vision Research.

[26]  D. Knill,et al.  Discrimination of planar surface slant from texture: human and ideal observers compared , 1998, Vision Research.

[27]  Raymond van Ee,et al.  Temporal aspects of stereoscopic slant estimation: an evaluation and extension of Howard and Kaneko's theory , 1998, Vision Research.

[28]  Anne C. Sittig,et al.  The precision of proprioceptive position sense , 1998, Experimental Brain Research.

[29]  James A. Crowell,et al.  Horizontal and vertical disparity, eye position, and stereoscopic slant perception , 1999, Vision Research.

[30]  R. Jacobs,et al.  Optimal integration of texture and motion cues to depth , 1999, Vision Research.

[31]  M. Banks,et al.  Estimator Reliability and Distance Scaling in Stereoscopic Slant Perception , 1999, Perception.

[32]  M. Banks,et al.  Perceiving slant about a horizontal axis from stereopsis. , 2001, Journal of vision.

[33]  M S Landy,et al.  Ideal cue combination for localizing texture-defined edges. , 2001, Journal of the Optical Society of America. A, Optics, image science, and vision.

[34]  P. Giblin Computational geometry: algorithms and applications (2nd edn.), by M. de Berg, M. van Kreveld, M. Overmars and O. Schwarzkopf. Pp. 367. £20.50. 2000. ISBN 3 540 65620 0 (Springer-Verlag). , 2001, The Mathematical Gazette.

[35]  Martin S. Banks,et al.  Are corresponding points fixed? , 2001, Vision Research.

[36]  D. Long Probabilistic Models of the Brain. , 2002 .

[37]  M. Ernst,et al.  Humans integrate visual and haptic information in a statistically optimal fashion , 2002, Nature.

[38]  I. Howard,et al.  Seeing in depth, Vol. 2: Depth perception. , 2002 .

[39]  James M. Hillis,et al.  Combining Sensory Information: Mandatory Fusion Within, but Not Between, Senses , 2002, Science.

[40]  The stereoscopic anisotropy affects manual pointing. , 2002, Spatial vision.

[41]  G. Mather,et al.  Blur Discrimination and its Relation to Blur-Mediated Depth Perception , 2002, Perception.

[42]  D. Wolpert,et al.  When Feeling Is More Important Than Seeing in Sensorimotor Adaptation , 2002, Current Biology.

[43]  Rajesh P. N. Rao,et al.  Probabilistic Models of the Brain: Perception and Neural Function , 2002 .

[44]  Michael S. Landy,et al.  Bayesian modeling of visual perception , 2002 .

[45]  Robert A Jacobs,et al.  Bayesian integration of visual and auditory signals for spatial localization. , 2003, Journal of the Optical Society of America. A, Optics, image science, and vision.

[46]  S. Gepshtein,et al.  Viewing Geometry Determines How Vision and Haptics Combine in Size Perception , 2003, Current Biology.

[47]  J. Saunders,et al.  Do humans optimally integrate stereo and texture information for judgments of surface slant? , 2003, Vision Research.

[48]  M. Landy,et al.  Weighted linear cue combination with possibly correlated error , 2003, Vision Research.

[49]  D. Burr,et al.  The Ventriloquist Effect Results from Near-Optimal Bimodal Integration , 2004, Current Biology.

[50]  M. Landy,et al.  Why Is Spatial Stereoresolution So Low? , 2004, The Journal of Neuroscience.

[51]  A. Yuille,et al.  Object perception as Bayesian inference. , 2004, Annual review of psychology.

[52]  Konrad Paul Kording,et al.  Bayesian integration in sensorimotor learning , 2004, Nature.