Characterization of mode-I and mode-II fracture properties of fine aggregate matrix using a semicircular specimen geometry

Abstract Cracking in asphalt pavements causes primary failure in structure, with long-term durability issues often related to moisture damage. Fracture resistance and characteristics of asphalt materials significantly affect asphalt pavement service life. Studies have typically considered only mode-I (opening) fracture, but many observations demonstrate the significance of mode-II (sliding) fracture for better design of pavement structures and damage characterization of asphaltic materials. This study presents experimental and numerical efforts to characterize mode-I and mode-II fracture properties of a fine aggregate matrix mixture. To this end, semicircular bending tests were integrated with a digital image correlation system and extended finite element method. With limited scope and test results, this approach shows that mode-II fracture toughness is quite different from mode-I fracture toughness (approximately three times greater than mode-I), clearly indicating that mode-dependent fracture characteristics are necessary in structural design of asphalt pavements with which multiaxial fracture is usually associated.

[1]  M. Ayatollahi,et al.  Wide range data for crack tip parameters in two disc-type specimens under mixed mode loading , 2007 .

[2]  William G. Buttlar,et al.  Micromechanical fracture modeling of asphalt concrete using a single-edge notched beam test , 2009 .

[3]  Glaucio H. Paulino,et al.  Development of a Single-Edge Notched Beam Test for Asphalt Concrete Mixtures , 2005 .

[4]  Mostafa A. Elseifi,et al.  Laboratory Evaluation of Asphalt Mixtures Containing Sustainable Technologies , 2011 .

[5]  Soo-Ho Chang,et al.  Measurement of rock fracture toughness under modes I and II and mixed-mode conditions by using disc-type specimens , 2002 .

[6]  B. Birgisson,et al.  Determination of Fundamental Tensile Failure Limits of Mixtures , 2007 .

[7]  H. Reinhardt,et al.  A practical testing approach to determine mode II fracture energy GIIF for concrete , 2000 .

[8]  Hoki Ban,et al.  Integrated Experimental–Numerical Approach for Estimating Material-Specific Moisture Damage Characteristics of Binder–Aggregate Interface , 2011 .

[9]  Jia-Der Perng,et al.  Analysis of crack propagation in asphalt concrete using a cohesive crack model , 1991 .

[10]  Ted Belytschko,et al.  Elastic crack growth in finite elements with minimal remeshing , 1999 .

[11]  Andrew Braham Fracture characteristics of asphalt concrete in Mode I, Mode II, and Mixed-mode , 2008 .

[12]  W. Buttlar,et al.  Discrete fracture modeling of asphalt concrete , 2009 .

[13]  G. Paulino,et al.  Direct Extraction of Cohesive Fracture Properties from Digital Image Correlation: A Hybrid Inverse Technique , 2011 .

[14]  Zongqi Sun,et al.  Shear fracture (Mode II) of brittle rock , 2003 .

[15]  Joseph F Labuz,et al.  Determining the Low-Temperature Fracture Toughness of Asphalt Mixtures , 2002 .

[16]  Yong-Rak Kim,et al.  Mode I Fracture Characterization of Bituminous Paving Mixtures at Intermediate Service Temperatures , 2012 .

[17]  G. Paulino,et al.  Identification of cohesive zone model and elastic parameters of fiber-reinforced cementitious composites using digital image correlation and a hybrid inverse technique , 2011 .

[18]  Youngguk Seo,et al.  Application of Digital Image Correlation Method to Mechanical Testing of Asphalt-Aggregate Mixtures , 2002 .

[19]  Mihai O. Marasteanu,et al.  Investigation of Low Temperature Cracking in Asphalt Mixtures by Acoustic Emission , 2006 .

[20]  Glaucio H. Paulino,et al.  A bilinear cohesive zone model tailored for fracture of asphalt concrete considering viscoelastic bulk material , 2006 .

[21]  Yong-Rak Kim,et al.  Geometrical Evaluation and Experimental Verification to Determine Representative Volume Elements of Heterogeneous Asphalt Mixtures , 2010 .

[22]  I. L. Lim,et al.  Fracture testing of a soft rock with semi-circular specimens under three-point bending. Part 2—mixed-mode , 1994 .

[23]  Yong-Rak Kim,et al.  Microstructure modeling of rate-dependent fracture behavior in bituminous paving mixtures , 2013 .

[24]  M. Ortiz,et al.  FINITE-DEFORMATION IRREVERSIBLE COHESIVE ELEMENTS FOR THREE-DIMENSIONAL CRACK-PROPAGATION ANALYSIS , 1999 .

[25]  Youngguk Seo A Comprehensive Study of Crack Growth in Asphalt Concrete Using Fracture Mechanics , 2003 .

[26]  Louay N. Mohammad,et al.  Fracture Resistance Characterization of Superpave Mixtures Using the Semi-Circular Bending Test , 2005 .

[27]  Yeou-Shang Jenq,et al.  ANALYSIS OF CRACK RESISTANCE OF ASPHALT CONCRETE OVERLAYS--A FRACTURE MECHANICS APPROACH , 1993 .

[28]  Integrated experimental-numerical approach to model progressive moisture damage behavior of bituminous paving mixtures , 2012 .

[29]  Glaucio H. Paulino,et al.  Simulation of Crack Propagation in Asphalt Concrete Using an Intrinsic Cohesive Zone Model , 2006 .

[30]  Mihai O. Marasteanu,et al.  Evaluation of the low temperature fracture resistance of asphalt mixtures using the semi circular bend test , 2004 .

[31]  G. H. Paulino,et al.  Disk-shaped compact tension test for asphalt concrete fracture , 2005 .

[32]  K. P. Chong,et al.  New specimen for fracture toughness determination for rock and other materials , 1984 .

[33]  I. L. Lim,et al.  Stress intensity factors for semi-circular specimens under three-point bending , 1993 .

[34]  Simon A M Hesp,et al.  Low-Temperature Fracture Testing of Asphalt Binders: Regular and Modified Systems , 2000 .